
Faculty of Mathematics Centre for Education in

Waterloo, Ontario N2L 3G1 Mathematics and Computing

Grade 7/8 Math Circles
October 28, 2020

Propositions and Control Flow - Solutions

Introduction
Computer Science is a continually growing field. Every day, people around the world use tech-

nology to access information, create and relax. In fact, you are probably using a computer of

some form to read this document! Mathematics provides the backbones for Computer Sci-

ence. This week, we will look at one such example. We will first talk about Propositions and

their role in Computer Science. Then, we will use that to start to create our own programs

in Python! First, what is a Proposition?

Definition 1. Proposition
A proposition, is a statement that can be eval-

uated to one of true or false. For example, “it

is raining outside” is a proposition as it can be

checked and will either be true or false.

Definition 2. Truth Value
A truth value is whether a proposition is true

or false. For example, the truth value for the

proposition “5 + 2 ≥ 8” is false.

Logical Operators

Definition 3. Logical Operator

A logical operator joins one or more proposi-

tions to create a larger proposition.

Examples: AND, OR, NOT

Definition 4. AND Operator

Takes two propositions and gives a “true”

truth value if both propositions are true.

Otherwise, if gives a “false” truth value. The

AND operator is represented by ∧. Ex. P ∧Q

Definition 5. OR Operator

Takes two propositions and gives a truth value

of “true” if either (or both) of the propositions

are true. Otherwise, if gives a “false” truth

value. The OR operator is represented by ∨.

Ex. P ∨Q

Definition 6. NOT Operator

Takes one proposition and gives the opposite

valuation. If the proposition is “true” it yields

“false” and vice-versa. The NOT operator is

represented by ¬. Ex. ¬P

Note that our OR operator is different from the English or. For example, if the proposition

is “I ate the cake or I ate ice cream” it would be true if I ate only the ice cream, only the

cake or both the cake and the ice cream.

1



Simple and Compound Propositions

Notice that, in our examples for the definitions above, we substituted propositions for letters.

This is a common way to simiplify our propositions and find general rules for propositions.

Example. “It is not raining and I went outside” and “I do not like broccoli and I ate

carrots” could both be represented by (¬P ) ∧Q.

P represents “It is raining” or “I like broccoli”

Q denotes “I went outside” or “I ate carrots”

If we look only at the general proposition, we know that if P is false and Q is true, the

proposition is true. Then, without looking at the two English propositions, we can know

that they are true if their corresponding P is false and corresponding Q is true.

So, we can convert between English propostions and propositions using letters as substitutes.

To help with consistency, we make the following definitions:

Definition 7. Simple Proposition
A proposition that has not been formed with

the use of logical operators.

Example: “I walked my dog today.”

Definition 8. Compound Proposition
A proposition that has been formed with the

use of logical operators.

Example: “It is sunny today and I walked

my dog today”.

Compound propositions can be broken into a combination of simple propositions and logical

operators. For the example above, “It is sunny today” and “I walked my dog today” are

both simple propositions and “and” is a logical operator.

Exercise 1. Practice distinguishing between simple and compound propositions here:

https://www.geogebra.org/m/ yzz3wym5 .

2

https://www.geogebra.org/m/yzz3wym5


Solution:

When we convert propositions in English to one using letters, we substitute simple propo-

sitions with letters and leave logical operators. It is helpful to add brackets to establish an

order of precedence. What if I had:

“I did not walk my cat and I walked my dog”

Then, this would translate into ¬P ∧Q, where P is the proposition “I did walk my cat” and

Q is the proposition “I walked my dog”. Does this mean ¬(P ∧Q) or (¬P ) ∧Q? We know

from the English that we want (¬P )∧Q, as we are saying that I walked my dog but not my

cat, not that I didn’t walk both my cat and my dog. We use brackets to establish this and

thus represent the situation as (¬P ) ∧Q.

3



Truth Valuations
Since we now have general propositions, it can be helpful to know when they would evaluate

to true and when they would evaluate to false.

Definition 9. Truth Valuation

A truth valuation is an assignment of truth values to all simple propositions in a proposition.

For example, a truth valuation of P ∧Q would be P is true and Q is false.

Typically, we want to see all possible truth valuations of a given proposition. Truth tables

offer a concise way of showing these valuations and the resultant truth values. Often, in a

truth table, we use 1 to represent “true” and 0 to represent “false”. First, we need to list all

possible truth valuations. The number of possible truth valuations depends on the number

of simple propositions:

One Simple Proposition:

P

1

0

Two:
P Q

1 1

1 0

0 1

0 0

Three:
P Q R

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

Three is the highest number of simple propositions that we will need this week. Once we

have listed all the possible truth valuations, we list the resulting truth value of the final

proposition, given the truth valuation in that row.

As an example, below are the truth tables of the logical operators:

Truth Table for ∧:
P Q P ∧Q

1 1 1

1 0 0

0 1 0

0 0 0

Truth Table for ∨:
P Q P ∨Q

1 1 1

1 0 1

0 1 1

0 0 0

Truth Table for ¬:
P ¬P
1 0

0 1

Truth tables aren’t always easy to fill out. What if I had (P ∧Q)∨ ((¬Q)∨P )? Watch this

video: https:// youtu.be/XSl4VgUghgI to learn how to fill out a larger truth table.

Exercise 2. Practice filling out this truth table: https://www.geogebra.org/m/ yx4vhutc.

4

https://youtu.be/XSl4VgUghgI
https://www.geogebra.org/m/yx4vhutc


Solution:

5



Introduction to Python
In order to create the apps and programs that we use to interact with our devices, Computer

Scientists use programming languages. It is through these languages that we tell computers

how to behave. One of the key aspects when coding is the use of boolean expressions. This

week, we will be taking what we have learned about propositions and use them to create

Python programs. First, we need to learn some basic coding skills.

Watch this video: https:// youtu.be/wSEsKx-p kU to learn the basics of coding using the

Python programming language. Throughout the video, there will be places where you are

asked to pause and try some exercises to practice. Those exercises are listed below. All

exercises asking you to write a program can be done using this panel: https:// open.cs.

uwaterloo.ca/ python-from-scratch/ python-panel/ , which allows you to run the code that

you write. Write your code in the top box and click Run to see what your program outputs

in the bottom box.

Exercise 3. Write a program that outputs Hello World!

Solution:

print("Hello World!")

Exercise 4. Write a program that, using only one variable and only using print statements

with variables, prints the following, one word at a time: Hi Human! How are you?

Solution:

6

https://youtu.be/wSEsKx-p_kU
https://open.cs.uwaterloo.ca/python-from-scratch/python-panel/
https://open.cs.uwaterloo.ca/python-from-scratch/python-panel/


Exercise 5. Write a program with four variables, one, two, three and four, which prints out

the information in each variable in the following order: three, one, four, two.

Solution:

Exercise 6. Write a program that has a variable x which is equal to some integer. It then

performs the operations listed below on x. In each step, take the result from the step before

as the input.

1. Multiply by 8.

2. Add 16.

3. Divide by 4.

4. Find the remainder when divided by 2.

5. Add 16.

6. Subtract 3.

Example: x = 10

1. 8 ∗ 10 = 80

2. 80 + 16 = 96

3. 96/4 = 24

4. 24%2 = 0

5. 0 + 16 = 16

6. 16− 3 = 13

Your program should output 13.0, no matter what integer x is initially equal to.

Solution:

7



Exercise 7. Write a program, similar to that in Exercise 7, that always outputs your

favourite number.

Solution: This program always outputs 132.0.

8



Control Flow
Now that we know the basics of Python, we can begin to combine what we learned about

propositions. In Computer Science, we often need to chose whether to perform an action

based on given information. To do this, we use boolean expressions, which are very similar

to propositions. Like propositions, boolean expressions are either true or false. Our logi-

cal operators remain the same, but rather than using phrases like “it is raining”, we use

expressions like x > 5.

Definition 10. Control Flow
Control flow is the order code is executed.

When writing programs, we don’t always want

to go exactly in the order of the lines listed.

To change the order, we use tools like if..else

blocks and while loops. To use these, we need

boolean expressions.

Definition 11. Comparision Operators
To check if a variable is related to a number or

another variable, we often use comparision op-

erators. The comparison operators are: ==,

!=, >,<,>= and <=. The result of a compar-

ison operator b is always either true or false.

a == b yields true when a and b are equal and

a != b is true otherwise. a > b and a < b gives

a true truth value if a is strictly greater (or

less for <) than b. a >= b and a <= b are

true when a is greater/less than or equal to b.

Definition 12. Logical Operators in Python
To write the logical operators in Python, we

use and, or and not(), where the brackets in

not contain the portion that we are negating.

Definition 13. If...else Block
To use these boolean expressions, we often add

them to if...else blocks. An if...else statement

contains a boolean expression. If the boolean

expression yields a truth value of true, the

code in the if section will run. Otherwise, the

code in the else section will.

Definition 14. While Loop
A while loop will run through the same piece of

code over and over until its boolean expression

is false.

For an example of if...else blocks and while

loops, watch this video:

https:// youtu.be/ cf531qrw41w

Exercise 8. Write a boolean expression that is only true when x is greater than 5 and y is

less than or equal to 7. Write a program to help check your answer.

Solution:

Boolean Expression: (x > 5) and (y <= 7)

9

https://youtu.be/cf531qrw41w


Exercise 9. Write a program that outputs whether x is an odd or an even number.

Solution:

Exercise 10. Write a program that outputs every second number between two variables, x

and y, starting with outputing x. Assume that x is less than y.

Solution:

10



Problem Set

1. Find the truth valuation for each of the given propositions if P is false, Q is true, and

R is true.

(a) (P ∧Q) ∨ (¬R)

(b) (Q ∧ (¬P )) ∧ (R ∧ P )

(c) P ∨ (R ∧Q)

(d) (P ∧ (Q ∨ (R ∧ (¬P )))) ∨ (Q ∧ (P ∨R))

Solution:

a) False b) False c) True d) True

2. Find a proposition that is only true when either P and Q are both true or P is not

true and R is true.

Solution:

(P ∧Q) ∨ ((¬P ) ∧R)

Note: This is solution is one of many possible.

3. Find a proposition with P and Q that always has a true truth value (no matter the

truth valuation).

Solution:

(P ∨Q) ∨ ((¬P ) ∧ (¬Q))

Note: This is solution is one of many possible.

4. Find a proposition with P and Q that always has a false truth value.

Solution:

(P ∧Q) ∧ (P ∧ (¬Q))

Note: This is solution is one of many possible.

5. Draw the truth tables for the following propositions.

(a) (P ∧Q) ∧ (¬P )

(b) P ∧ (Q ∨ (R ∨ (¬Q)))

(c) (P ∧R) ∨ (Q ∧ ¬(Q ∧ P ))

(d) ((P ∨Q) ∨ (R ∧ (¬P ))) ∨ (¬Q)

Solution:

(a) P Q P ∧Q ¬P (P ∧Q) ∧ (¬P )

1 1 1 0 0

1 0 0 0 0

0 1 0 1 0

0 0 0 1 0

11



(b) P Q R ¬Q R ∨ (¬Q) Q ∨ (R ∨ (¬Q)) P ∧ (Q ∨ (R ∨ (¬Q)))

1 1 1 0 1 1 1

1 1 0 0 0 1 1

1 0 1 1 1 1 1

1 0 0 1 1 1 1

0 1 1 0 1 1 0

0 1 0 0 0 1 0

0 0 1 1 1 1 0

0 0 0 1 1 1 0

(c)

P Q R P ∧R Q ∧ P ¬(Q ∧ P ) Q ∧ (¬(Q ∧ P )) (P ∧R) ∨ (Q ∧ (¬(Q ∧ P )))

1 1 1 1 1 0 0 1

1 1 0 0 1 0 0 0

1 0 1 1 0 1 0 1

1 0 0 0 0 1 0 0

0 1 1 0 0 1 1 1

0 1 0 0 0 1 1 1

0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0

(d)

P Q R ¬P ¬Q P ∨Q R ∧ (¬P ) (P ∨Q) ∨ (R ∧ (¬P )) ((P ∨Q) ∨ (R ∧ (¬P ))) ∨ (¬Q)

1 1 1 0 0 1 0 1 1

1 1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1 1

1 0 0 0 1 1 0 1 1

0 1 1 1 0 1 1 1 1

0 1 0 1 0 1 0 1 1

0 0 1 1 1 0 1 1 1

0 0 0 1 1 0 0 0 1

6. Write a boolean expression that can be used to to determine if both x is less than 5

and y is 6.

Solution:

(x < 5) and (y == 6)

12



7. Write a program that will print True if x is between or equal to y and z and x is not

a multiple of 5. Assume that y is smaller than z.

Solution:

8. Write a program that will print all the numbers between, but not equal to, y and z

that are not multiples of 2, but are multiples of 3. Assume you do not know which of

y and z are smaller.

Solution:

13



9. Write a program that, given three numbers, a, b and c, finds the smallest, greatest and

middle number. Assume none of the numbers are equal.

Solution:

10. Write a program that does something interesting. This could be helping to solve a math

problem, a short game or anything you want to code. Share your code on Piazza!

Solution: Check Piazza for some solutions!

14


