# Intermediate Math Circles October 14, 2020

#### Perfect Squares

The Centre for Education in Mathematics and Computing Faculty of Mathematics, University of Waterloo

www.cemc.uwaterloo.ca

A perfect square is an integer that is the square of an integer.

In other words, an integer s is a perfect square if  $s=n^2$  for some integer n.

There are many different ways to illustrate a perfect square and they often involve the geometric notion of a square.

16 is a perfect square since  $16=4^2$ . We can illustrate this perfect square by drawing 16 dots arranged in a  $4\times 4$  square grid.

- $\circ \circ \circ \circ$
- 0000
- $\circ \circ \circ \circ$
- $\circ \circ \circ \circ$

Similarly, we can illustrate the perfect square  $25=5^2$  by drawing 25 dots arranged in a  $5\times 5$  square grid.

- 0000
- 0000
- 0000
- 0 0 0 0

If we then group the dots as shown, what do you notice?



$$16 = 4^2$$



$$25 = 5^2$$

If we then group the dots as shown, what do you notice?



$$16 = 4^2$$
$$16 = 1 + 3 + 5 + 7$$

$$25 = 5^{2}$$
$$25 = 1 + 3 + 5 + 7 + 9$$

Perfect squares can be built using consecutive odd positive integers.

These examples demonstrate the following fun fact:

The perfect square  $s=n^2$  (where n is a positive integer) can be illustrated using dots arranged in an  $n\times n$  square grid, and is equal to the sum of the first n consecutive odd positive integers.

This fact can be used to perform efficient calculations.

## Example

#### Question:

What is the sum of the first 12 consecutive odd positive integers?

#### Solution:

The first 12 consecutive odd positive integers can be illustrated using dots arranged into a  $12 \times 12$  square grid. Therefore, the sum of these integers is equal to  $12^2 = 144$ .

#### Problem Set

- 1. What is the sum of the first 99 consecutive odd positive integers?
- 2. If 1225 is the sum of the first m consecutive odd positive integers, what is the value of m?
- 3. What is the sum of the odd integers from 1 to 50?
- 4. What is the value of the sum 1 + 3 + 5 + ... + 141 + 143 + 145?
- 5. What is the value of the sum 17 + 19 + 21 + ... + 207 + 209 + 211?
- 6. What is the value of the sum 3 + 9 + 15 + ... + 423 + 429 + 435?
- 7. What is the value of the sum 2 + 4 + 6 + ... + 296 + 298 + 300?