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1 What is a Game?

When you hear the word “game” a few particular games likely come to mind: Monopoly,
Chess, Scrabble, Tic-Tac-Toe. While the rules of these games are very different, each involves
multiple players who make their own decisions and try to win. They differ because for each
game, its rules tell us which decisions are valid moves.

Many real-life situations can be thought of using the same framework. For example, when
stores choose the price of a certain product, they want to make as much profit as possible,
but the prices set by other stores also influence how well the product will sell. We want to
provide a systematic way of analyzing games and the best ways to play them®, and how this
translates to both recreational games and “real-life” games.

Before we can analyze games, we need to be clear on what exactly a game even is!
We need a precise, mathematical definition that we can work with. In what follows, we
describe the basic properties of a mathematical game, using Rock, Paper, Scissors (RPS) as
an illustrative example. A game consists of the following:

e A set of players who are participating. RPS is usually played with 2 people.

o A set of strategies for each player. When the game is played, each player chooses one
of their strategies simultaneously?. In RPS, each of the two players chooses between
three strategies: Rock, Paper, and Scissors.

'In other words: how to win!

2This may sound strange to you, because in most board games, players take turns. Our definition will
be easier to analyze, and it is actually mathematically equivalent. Think of it this way, for Tic-Tac-Toe: if
o goes first and x goes second, then x could decide on a strategy that says “In the first round, if o doesn’t
take the middle square, I will take it. If o does choose the middle square, I will pick the top left one. In the
second round, ...” A strategy can be a complex series of “what-ifs” like that. For Chess, although such a
strategy theoretically exists, you couldn’t write down a good complete one even if you spent the rest of your
life on it!



e A payoff function that takes as input one strategy from each player, and outputs to
each player a number representing their payoff, or amount won. In a game like RPS,
we typically represent a win by a payoff of 1, a loss by a payoff of —1, and a tie by a
payoft of 0.

Sometimes the payoff represents an actual amount, like points in a game, or a gain or
loss of money; sometimes the payoff can represent something more abstract, like happiness
arising from a real-life decision, in which case numbers stand in to approximate the relative
values of different outcomes?®.

Suppose that Rose and Colin are playing RPS. We represent the game by the following
table. To play the game, you find Rose’s choice of strategy on the left, and Colin’s choice of
strategy up top, and locate the corresponding table entry. To read the payoff, interpet the
ordered pair as (Rose’s payoff, Colin’s payoff):

Rose Colin Rock | Paper | Scissors
Rock (0,0) | (—=1,1) | (1,-1)
Paper 1,-1) | (0,0) | (=1,1)

Scissors (—-1,1) | (1,-1) | (0,0)

Table 1: Payoffs in the game of Rock, Paper, Scissors.

For example, suppose that Rose chooses Rock, and Colin chooses Scissors. We find the
corresponding entry is (1, —1), indicating that Rose gets a payoff of 1 for winning, and Colin
gets a payoff of —1 for losing.

Another example is the game of Chicken, a reckless game in which Rose and Colin head
towards each other on bicycles and the first to swerve (to avoid a collision) “loses”. To
simplify things, let us assume both bikes keep heading towards each other until their last
chance to swerve. Then the payoff table might roughly look like this:

Colin .
Rose Swerve Straight
Swerve (—1,-1) (—3,1)
Straight (1,-3) | (—=1000,—1000)

Table 2: The game of Chicken.

Note that for this game, some of the payoffs do not correspond to a monetary amount,
nor are just winning or losing, so they instead roughly correspond to how the players feel
about the outcome. For example, if both swerve, then while the game is a draw in some
sense, both feel like they chickened out a bit, and so both receive a negative payoff rather

3Numbers are useful, because we can compare them. If the payoffs were “you win a book” and “you win
a box of chocolates,” it would be harder to tell mathematically which outcome we should strive for!



than 0. If one of them swerves, that person feels a bit worse, and the other “wins”. If neither
swerves, then they crash into each other, likely wrecking their bikes and injuring each other.
Note that in fact each pair has a negative sum, so the net effect of playing this game on the
players is always negative, which doesn’t seem like a good game to play!

Note that in general there may be more than two players, or even infinitely many strate-
gies (for example when ordering or using an amount of a material) in which case payoffs
cannot be represented by a table. In these cases, remember that there is still a payoff
function that represents the payoff to each player.

Note: Before proceeding to the next section, if you want to work through more examples
of games, see Problem 1 at the end of the lesson.

2 Analyzing Games

The goal of studying games mathematically is to understand the best way to play them,
whether the players would actually play them the way that our mathematical analysis sug-
gests, and the implications of this. The second and third of these questions are generally
more in the realm of psychology and economics respectively, so mathematically it is sensible
to focus on the first and most direct question: what is the optimal way to play a game, given
that you do not know what strategies the other player(s) will pick?

2.1 Pure Strategies

The simplest way to start is to compare strategies against each other directly. Consider the

following game between Rose and Colin, each of whom has two possible strategies labelled
A and B:

Colin
Rose

A @,-1)| (0,0)
B (—2.2) | (-L.1)

Table 3: A simple game.

Let us start by looking at the game from Rose’s point of view, looking at the first number
in each pair since this is her payoff. If Colin chooses A, then Rose gets a payoff of 1 with
her strategy A and —2 with B. On the other hand, if Colin chooses B, Rose gets payoff 0
going with A and —1 going with B. No matter what strategy Colin chooses, Rose does better
choosing A than choosing B, so she never has a reason to choose B. When this happens, we
say that strategy A dominates strategy B, meaning that the payoff from choosing A is always
greater than or equal to the payoff from choosing B no matter what the other player(s) do.



Note that the same is not true for Colin: either A or B could give a better result for Colin
depending on what Rose plays. However, by the above analysis Colin knows that Rose will
never play B, so we can simply remove that entire row from consideration. And in what is
left, namely the case where Rose chooses A, it is clear that Colin should choose B. Thus each
player has a unique strategy that they should always choose, so this game has a pure-strategy
solution.

Looking for dominant strategies is a good starting point for analyzing a game. For Colin,
neither strategy dominates the other in the original game, but one does dominate once we
remove Rose’s dominated strategy from consideration. Thus, analyzing games for dominant
strategies may be a multi-step process.

2.2 Mixed Strategies

Of course, many games do not have any pure-strategy solutions. Think about Rock, Paper,
Scissors from before. In this game, Rose’s optimal strategy may be any of Rock, Paper, or
Scissors depending on what Colin chooses. In fact, it is intuitive to think that if you play
this game multiple times you want to play each strategy roughly % of the time rather than
commit more than that to any one strategy.

To analyze these sorts of games, we assume that each player will play each of their
strategies with a certain probability, and we will then analyze the expected payoff. This is
called a mized strategy. To describe a mixed strategy for a player, we assign a probability to
each of their normal (pure) strategies and make sure that the probabilities add up to 100%.
Note that picking one strategy 100% of the time (a pure strategy) is also a mixed strategy.

If a game doesn’t have a pure-strategy solution, the next thing we can look for is a
natural solution in mixed strategies for both players. What exactly constitutes an optimal
mixed-strategy solution?

Let us use Rock, Paper, Scissors as an example. Suppose that Rose has decided to play
Rock 60% of the time and Paper 40% of the time (and Scissors 0% of the time). Suppose
that Colin is playing Rock 25% of the time and Scissors 75% of the time (and Paper 0% of
the time). To calculate Rose’s expected payoff, we look at each possible pair of a strategy
by Rose and a strategy by Colin. We take the payoff to Rose from this choice, and multiply
it by the probability that this pair of strategies occurs.

For example, in the case where Rose chooses Rock and Colin chooses Scissors, the payoff
is 1 to Rose, and this pair of strategies happens with probability (0.6)(0.75) = 0.45, or 45%
of the time. Summing over all of the possible strategy pairs, take the time to verify that
Rose’s expected payoff is

0(0.6)(0.25) + 1(0.6)(0.75) + 1(0.4)(0.25) + (—1)(0.4)(0.75) = 0.25

so overall Rose is expected to win slightly more than she loses.
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Now of course, it is not hard to see that Colin can do better. For example, since Rose
never plays Scissors, Colin can never lose if he always plays Paper, so he could switch to
100% Paper and have a better expected payoff for him.* Of course, Rose could switch her
strategy in response to this, and so on and so forth. But is it possible to prevent this process?
It would seem that truly optimal play must require a player to use a mixed strategy that
their opponent cannot counter, even if they know it. This inspires the following definition:

Definition 1. A choice of mized strategies for each player in a game is called a Nash
equilibrium (or just equilibrium) if no player can improve their expected payoff by choosing
a different mized strategy (while keeping the other players’ mized strategies the same).

We have seen a Nash equilibrium in the game described by Table 3. If Rose chooses A
and Colin chooses B, then both get a payoff of 0. Here, Rose doesn’t want to switch to B,
because if Colin sticks with his strategy B, this would give Rose payoff —1, which is worse.
Colin doesn’t want to switch to A, because if he switches to A and Rose sticks with her
strategy A, Colin would get a worse payoff of —1. For each player, we only consider if they
can improve their own payoff by only changing their own strategy. If they cannot, as is the
case when Rose picks A and Colin picks B, we have a Nash equilibrium.

If you would like some practice with this concept before continuing, you can try Exercises
3 and 4.

The concept of a Nash equilibrium was introduced and popularized by John Nash, a
Princeton mathematician who was a pioneer in game theory. He famously® proved that
Nash equilibria exist:

Theorem 2. Every game with a finite number of players and a finite number of strategies
has at least one Nash equilibrium (possibly in mized strategies).

What is a Nash equilibrum of the above game? It is not hard to guess that both players
choosing each strategy 1/3 of the time is an equilibrium, and indeed we can prove it. Suppose
Rose knows that Colin is playing this strategy. What is her expected payoff if she plays
Rock with probability r, Paper with probability p, and Scissors with probability s (so that
r+p+ s =1)7 Then her expected payoff is

1 1 1
S(r(0) + p(1) + 5(=1)) + 2(r(=1) + p(0) + (1)) + 3(r(1) + p(=1) + 5(0)) = 0
which is in fact independent of the choice of r, p, and s. So if both players are playing
with this mixed strategy, neither can improve their expected payoff by switching to another

strategy.

4Calculate this and verify that Colin’s expected payoff increases from —0.25 with the current set of
strategies to 0.6 if Rose continues with the same mixed strategy, but Colin switches to playing Paper 100%
of the time.

SHe proved this in his doctoral dissertation, which has only 26 pages!



However, if either player is not playing the equal probability mixed strategy, then some
player can change their strategy to improve their expected payoff, so the Nash equilibrium
for this game is unique. As an exercise, try to prove this formally!®

For Rock, Paper, Scissors, we could make an educated guess as to the Nash equilibrium
and prove that it works. But how do we find one when it isn’t obvious? Let us work through
the game of Chicken mentioned before:

Colin .
Rose Swerve Straight
Swerve (—1,-1) (—3,1)
Straight (1,-3) | (—=1000,—1000)

Table 4: The game of Chicken again.

Let r be the probability that Rose selects Swerve, and likewise let ¢ be the probability
that Colin selects Swerve (and thus 1 —r and 1 — ¢ are the respective probabilities they stay
going straight). The expected payoff to Rose is

—rc+ (1 —r)c—3r(l —¢) —1000(1 — r)(1 — ¢) = 997r — 999rc + 1001¢ — 1000.

Now, Rose can’t control the portion of her payoff given by 1001¢ — 1000, so she can only
try to maximize 997r — 999rc = (997 — 999¢). Thus, whether Rose wants r to be high or
low depends on whether 997 — 999¢ is positive, negative, or zero. Solving, we may verify

that the quantity is zero when ¢ = %. So there are three cases:

e c< %. Then Rose wants r as high as possible, so in this case we can’t have equilibrium

unless r = 1.

°c> %. Then Rose wants r as low as possible, so in this case we can’t have equilibrum

unless r = 0.

o c—= %. In this case the expected payoff is independent of 7.

Note that the strategies and payoffs are symmetric’, so we may apply the same analysis
to Colin. From this, we may conclude that no equilibrium is possible unless at least one of
997

r and c is one of the critical numbers 0, 1, or &5.

From here we may proceed by cases. Suppose first that r is a critical number. If r = 0,
then by the above rules and symmetry we must have ¢ = 1, and clearly this is an equilibrium

(in pure strategies!). Likewise, if 7 = 1 then we must have ¢ = 0. If r = %, then we may

6Hint: You can assume that one player has r, p, s not all equal to 1/3, so look at which one is largest.

"It may not always be clear when we can assume something by symmetry, so if you're not sure, you can
write out the argument for Colin and check that it actually does come out the same as for Rose, only with
r and ¢ switched.



check that we cannot have equilibrium unless also ¢ = %. If indeed r = ¢ = %, then
Rose’s payoft does not depend on r, and Colin’s payoff does not depend on ¢, so it is a Nash
equilibrium. Since in all three cases c is also a critical number, it follows that for equilibrium

r and ¢ must both be critical, and so our analysis is actually complete.

To summarize, the game of Chicken has three equilibria:

997 997
1 Dl =, — |-
(1,0),(0.1), (999’999)

What do these equilibria actually tell us about the game? The first two tell us that
if you're playing a game of Chicken, and you know for a fact that your opponent will go
straight, you should always swerve. If you know that your opponent will definitely swerve,
you may as well go straight. If you're pretty sure that your opponent will swerve, but not
entirely sure, then both of your strategies look about equally good.

Here, you can also see that not all Nash equilibria are created equal: for each of the Nash
equilibria above, compute Rose’s expected payoff and Colin’s expected payoff. You will see
that one of the Nash equilibria is better for Rose, one is better for Colin, and one is okay
but not great for both.



2.3 Lesson 1 Exercises

1. Write each of the following situations as a game, explicitly describing the players,

strategies, and what the payoffs represent.

(a) Rose and Colin both pick either 1 or 2. If the sum is odd then Rose wins, and if
the sum is even then Colin wins.

(b) Rose and Colin both choose to cultivate 10, 20, 30, 40, or 50 % of a shared field,
and get back a harvest with value equal to the percent chosen. However, if they
use at least 80% of the field combined, then it will not grow back the following
year, and both players suffer a penalty of value 100.

Rose, Colin, and Larry attend an auction for a single item. Rose values the item

at $20, Colin at $25, and Larry at $30. Each one submits a bid secretly, and the
highest bid wins the item and pays their bid for it (with ties broken in favor of
Larry, then Colin, then Rose).

2. Simplify the two games below by crossing out a strategy if there is another that domi-
nates it. How can you verify that you have simplified a game as much as possible using
this method?

Colin Colin
Rose A B C Rose A B C
B (2,2) | (1,6) | (1,0) B (4,2) | (1,6) | (1,3)
Table 5: Two games.
3. (a) Consider the game given by the table below. You can think of it as a bidding

game: Rose and Colin both bid 1, 2, or 3 dollars; and the higher bid wins (and
gets the money from both players). However, if they bid the same amount of
money, they both lose 1 dollar.® Which pure strategy Nash equilibria’ does this
game have?

Colin
Rose 1 2 3
1 (-1,—-1) | (—=1,1) (—1,1)
2 (1,-1) | (-1,-1)| (-2,2)
3 (1,-1) (2,-2) | (—=1,-1)

Table 6: Bidding game.

8Maybe they’ll donate the money to a charity in this case.

9That is, Rose and Colin each choose one of their strategies with probability 100%.




(b) Here is another game. Rose and Colin are giving class presentations. They both
prefer topic A. However, if both talk about the same topic, then their classmates
will get bored, so they could each switch to topic B instead. This game shows how

Colin
Rose A B

Table 7: Presentations.

vastly different Nash equilibria can be. Show that these are all Nash equilibria,
and compare the payoffs:

e Rose picks A, Colin picks B.

e Colin picks A, Rose picks B.

e Rose and Colin each pick A with probability 80% and B with probability
20%.

4. Find at least one Nash equilibrium for each of the games in Exercise 1 (you do not
need to try to find all of them), and explain how you know it is a Nash equilibrium.

5. In doing the previous problem, you may have noted for the game described in 1(c),
each player bidding how much they value the item is not an equilibrium (try checking
this if you have not already done so!).

Consider a variant in which the player making the largest bid wins the item, but pays
the second-largest bid for it. Show that for this modified game (known as a Vickrey
auction), each player bidding how much they value the item is now an equilibrium.

6. A Nash equilibrium is called stable if when one player deviates slightly from the best
probabilities, no other player has an incentive to change their strategies. Otherwise it
is called unstable.

Is the Nash equilibrium for Rock, Paper, Scissors stable or unstable? Which of the
three Nash equilibria for the game of Chicken are stable and which are unstable?*?

7. The following game is called the Prisoners’ Dilemma.

Criminals Bonnie and Clyde have finally been caught running from the police after
robbing a bank. Unfortunately for the cops, they can’t prove that Bonnie and Clyde
are the serial bank robbers, only that they ran from and shot at police officers, which
will come with a penalty of one year in prison. So they offer each of them a deal: to
betray their partner and tell the police everything. If one of them takes the deal and
the other doesn’t, the one who tells the police everything will be released, and the
other will be imprisoned for ten years. If both take the deal, both will be imprisoned
for the robberies, but with a lighter sentence of six years for cooperating.

The payoff table is given on the next page:

0Hint: For the game of Chicken, there should be two stable ones and one unstable one.

9



Clyde ‘
Bonnie Say nothing | Take deal
Say nothing (—1,—1) (—10,0)
Take deal (0, —10) (—6,—6)

Table 8: The Prisoners’ Dilemma.

(a) Find the unique Nash equilibrium of this game.

(b) Find strategies for Bonnie and Clyde that give both of them a strictly better
payoff than the Nash equilibrium.!!

(c) Suppose that four players Jessie, James, Butch, and Cassidy each play the game
once against each other player (so there are a total of six games, one for each
pair). Suppose that Jessie and James both always pick “say nothing” and that
Butch and Cassidy both always pick “take deal”. For each player, state what
their overall payoff is after all of their games (that is, the sum of their payoffs
from each game). What if each player plays a 10-game series against each other
player?

(d) Suppose that these four players again play this game 10 times against each other
player, but Jessie and James have come back with a new strategy that changes
from game to game within a series: in the 10-game series against a given player,
they always choose “say nothing” in the first game, and then in each subsequent
game they choose whatever their opponent chose the previous game. This multi-
game strategy is called tit-for-tat. Explain how the games go, and give the total
payoff to all players at the end.

8. Suppose that Rose and Colin play a game where each chooses a positive integer. Sup-
pose that if Rose chooses r and Colin chooses ¢ the payoff to Rose is » — ¢ and the
payoff to Colin is ¢ —r. Explain why this game has no Nash equilibrium (Hint: there is
a lowest number Rose chooses with positive probability. Could she do better?). Why
does this not violate Theorem 27

9. Challenge Problem: Let 1,2, ... be infinitely many climbers, each of whom is consider-
ing climbing Mount Everest. They each decide whether or not to climb the mountain
in order, first 1, then 2, and so on.'?

Now, climbing Mount Everest is a lot of work, and is not really worth it unless you
are either the first or the last person to ever climb the mountain. Since the first to
climb already occurred (shoutouts to Edmund Hillary and Tenzing Norgay), it is only
worthwhile to be the last.

Thus, each climber 7 may choose to ascend Everest or to stay off of the mountain. The
payoff to a given i is then given as follows:

' This is why they always put people in different rooms when offering them a deal: if Bonnie and Clyde
could agree to play these better strategies beforehand, they would!

12For example, perhaps 1 was considering this in 2001, and 2 in 2002, and so on. Assume for this problem
that we expect the Earth and humanity to last forever.
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1’s choice

Other choi - )
or cholees Nobody after ¢ ascends | At least one person after ¢ ascends

Ascend 100 —100

Stay off 0 0

Two

Table 9: The Everest Climbing Game.

examples are given to illustrate. First, suppose that only climbers 1, 4, and 9

choose to ascend. Then only these climbers get nonzero payoff. Climbers 1 and 4 each
get —100, and 9 gets payoff 100.

Second, suppose that all even numbered climbers choose to ascend. Then all odd
numbered climbers get payoff 0, and all even numbered climbers get payoff —100, since
for each even climber, there is always a higher-numbered climber who also climbs.

We will show, step-by-step, that this game has no Nash equilibrium.

(a)

Let us first consider pure strategies, that is, each climber chooses “ascend” or
“stay off.” Show that if finitely many climbers choose to ascend Mount Everest,
it is not a Nash equilibrium.'® Now show that if infinitely many climbers choose
to ascend Mount Everest, it is not a Nash equilibrium.!*

Now let us assume that there is a Nash equilibrium with mixed strategies. In this
strategy, let z; be the probability that ¢ will decide to ascend Mount Everest. By
(a), we can assume there is a player ¢ with 0 < z; < 1. Show that this means
that the probability that at least one of the climbers after i chooses “ascend” is
exactly 50%.

Continuing from (b), since the probability that i is the last to ascend has to be
exactly 50%, conclude that there is someone after i, say j with j > ¢, who also
played a mixed strategy 0 < x; < 1.

Continuing again, this means that the probability that at least one of the climbers
after j ascends is also exactly 50%. Why is this impossible?

Conclude from (a)-(d) that there is no Nash equilibrium for this game. Why does
this not violate Theorem 27

13The advantage of having finitely many people ascending Mount Everest is that there is a last person,
say 4, who chooses to ascend. But, knowing this, who should change their strategy?
H41f infinitely many people all choose “ascend”, then none of them the is last one to do so!
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