
Grade 11/12 Math Circles - Fall 2021

Circles, Ellipses, and Astrophysics

Part 1: Fundamentals

SOLUTIONS
Exercise 1
To draw a circle using these tools, tape one end of the string to the paper and tie your pen/pencil
to the other end. Then, keeping the string taut, move the pen/pencil around either clockwise or
counterclockwise to trace out a circle. The length of your string will be the circle’s radius, and the
taped point is the circle’s centre.

Exercise 2

(a) Given that the unit circle has radius 1 and centre at the origin, using the equation (x− a)2 +
(y − b)2 = r2 and substituting r = 1, a = 0, and b = 0, we arrive at x2 + y2 = 1.

(b) This is the circle with radius 2 and moved left 2 and up 3 (so the centre is at (−2, 3)).

(c) This is the circle with radius 4 and centre at (4, 4). Using the equation (x− a)2 + (y− b)2 = r2

and substituting r = 4, a = 4, and b = 4, we arrive at (x− 4)2 + (y − 4)2 = 16.

Exercise 3

(a) The total of all the angles in question for all n isosceles triangles 360◦ as this is a full rotation.
This angle is split across the n isosceles triangles in each n-gon, meaning the angle in question
is 360◦

n
.

(b) Consider the diagram on the next page for one of the n isosceles triangles. We can find
the base and height of the triangle by constructing a right-angled triangle. We use the fact
that sin(θ) = O

H
and cos(θ) = A

H
, where H = 1 for the right-angled triangle in question,

and the θ = 1
2
360◦

n
= 180◦

n
. We find that h = cos(180

◦

n
) and b

2
= sin(180

◦

n
). So, the area of

the triangle is A = 1
2
(2 sin(180

◦

n
))(cos(180

◦

n
)) = (sin(180

◦

n
))(cos(180

◦

n
)). Using the trigonometric

identity provided, we find A = 1
2
sin(360

◦

n
) as desired.



(c) Each n-gon is made up of n triangles, so we multiply the area found in the previous part by n
to arrive at n

2
sin(360

◦

n
).

(d) Plugging n = 8, n = 15, n = 50, and n = 3000 into the formula in (c) we get A = 2.828427,
A = 3.050525, A = 3.133331, and A = 3.141590. It is clear the areas are approaching π,
which is expecting as the n-gons in question are approaching a unit circle, which has area
A = π(12) = π.

Exercise 4
To draw an ellipse using these tools, tape both ends of the string to the paper at two different places
and pull the string taut with your pen/pencil. Then, keeping the string taut, move the pen/pencil
around either clockwise or counterclockwise to trace out an ellipse. The length of your string will be
the constant distance sum, and the taped point are the ellipse’s foci.

Exercise 5

(a) This ellipse has major axis corresponding to the x-axis, where half the length of the major axis

is 2 and half the length of the minor axis is 1. Using the equation
x2

a2
+
y2

b2
= 1 and substituting

in a = 2 and b = 1 we arrive at
x2

4
+ y2 = 1. Then, substituting a = 2 and b = 1 into

a2 = f 2 + b2 we find that the foci are at (±
√
3, 0).

(b) Here, the major axis is along the y-axis. Half the length of the major axis is 9 and half the
length of the minor axis is 6. Substituting a = 9 and b = 6 into a2 = f 2 + b2 we find that the
foci are at (0,±3

√
5).



(c) This ellipse has major axis corresponding to the x-axis, where half the length of the major axis
is 6 and half the length of the minor axis is not immediately clear. The foci are at (±3, 0).
Substituting a = 6 and f = 3 into a2 = f 2 + b2 we find that b = 3

√
3. Using the equation

x2

a2
+

y2

b2
= 1 and substituting in a = 6 and b = 3

√
3 we arrive at

x2

36
+

y2

27
= 1.

Exercise 6

(a) In the given pen/pencil position, we can break up the length of the string into three portions
(indicated by the arrows in the diagram below). The length of sections 1 and 2 are each a− f ,
and the length of section 3 is 2f . Thus, the total length of the string is 2(a − f) + 2f =
2a− 2f + 2f = 2a as desired.

(b) In the given pen/pencil position, we can draw two right-angled triangles as shown in the diagram
below. These two triangles are congruent (SAS), so their hypotenuse must be equal, thus each
hypotenuse is exactly half the length of the string, giving us hypotenuse of length a. Then,
application of Pythagorean Theorem gives f =

√
a2 − b2 as desired.



(c) Here, it is useful to note that the perpendicular line in the diagram intersects the x-axis at (x, 0)

and has height y. Now, using the ellipse equation
x2

a2
+

y2

b2
= 1 we can find that y2 = b2(1− x2

a2
).

Thus, by applying Pythagorean Theorem on the left side right-angled triangle, we find that

l21 = (
√
a2 − b2 + x)2 + y2

= (
√
a2 − b2 + x)2 + b2(1− x2

a2
)

= a2 − b2 + 2x
√
a2 − b2 + x2 + b2 − x2b2

a2

=
x2

a2
(a2 − b2) + 2x

√
a2 − b2 + a2

= (
x

a

√
a2 − b2 + a)2

And, applying Pythagorean Theorem on the right side right-angled triangle yields

l22 = (
√
a2 − b2 − x)2 + y2

= (
√
a2 − b2 − x)2 + b2(1− x2

a2
)

= a2 − b2 − 2x
√
a2 − b2 + x2 + b2 − x2b2

a2

=
x2

a2
(a2 − b2)− 2x

√
a2 − b2 + a2

= (
x

a

√
a2 − b2 − a)2

(d) We have that l1 = ±(x
a

√
a2 − b2+a) and l2 = ±(x

a

√
a2 − b2−a). For l1 note that we are adding

two positive values, so the result in the brackets is positive, so we take l1 = x
a

√
a2 − b2 + a.

However, for l2 note that since x < a we have that x
a
< 1 and also note that

√
a2 − b2 <

√
a2,

so we have that x
a

√
a2 − b2 < a and so the result in the brackets is negative. Thus, we take

l2 = −(x
a

√
a2 − b2 − a) = a − x

a

√
a2 − b2. Finally, this gives us l1 + l2 = x

a

√
a2 − b2 + a + a −

x
a

√
a2 − b2 = 2a as desired.

Exercise 7

(a) First, note that by the construction indicated in the question, △PQG is isosceles with PQ =
PG. Introduce angle θ as shown on the diagram below. Then, as l is the perpendicular bisector,
we have split the isosceles triangle into two congruent right-angled triangles (SSS). Thus we
have that θ = β. Now since θ and α are opposite angles, we have that α = θ. Thus, we have
α = β as desired.



(b) As l is a perpendicular bisector, it divides QG into half. Thus, we have two right-angled tri-
angles whose base (half of QG) and height (the length of l from QG to point R) are the same.
Thus, by Pythagorean Theorem, we have that RQ = RG.

Now, recall that PG = PQ, and thus FQ = PF + PQ = PF + PG. Now, examining △FRQ,
by the triangle inequality we have RF + RQ ≥ FQ with equality only when R sits on FQ.
That is, since RQ = RG and FQ = PF + PG that we have RF +RG ≥ PF + PG as desired.

Note that the argument here is that PF + PG is the sum of the distance from the point P to
the foci. By definition, for an ellipse, this value is constant for any point along the ellipse. But
we have found RF +RG > PF +PG, so R cannot be a different location along the ellipse (we
do have the case of equality, which only holds when R and Q are the same point). So, l cannot
intersect the ellipse at another point, and is thus tangent to the ellipse at P .

Exercise 8

(a) First, note that the radius of the circle, OB, is by definition constant. Now, consider △PBA.
The perpendicular bisector cuts AB into half, thus giving us two right angled triangles that are
congruent (SAS). This means that PA = PB. Thus, we have that OB = OP+PB = OP+PA
is constant, as required.

(b) To show the perpendicular bisector is a line of type l, we must show that α = β as indicated
on the diagram below. Since we had that the two right-angled triangles are congruent from
the previous part, introduce θ, which due to congruency has θ = α. Now, since θ and β are
opposite angles, we have θ = β, thus giving α = β as desired.

Exercise 9
Since the distances must have been travelled over the same span of time, the planet must be orbitting
faster when it was closer to the Sun than when it was further from the Sun in order to travel a further
distance. This makes sense from a physical perspective, as the gravitational force on the planet from
the Sun is stronger when the planet is closer.



Exercise 10

(a) Returning to our ellipse equation symbolism and using the diagram showing where perihelion
is, we are given that a = 5.203 and that a−f = 4.950. We can use these to find that f = 0.253.
Then, plugging into the equation eccentricity = f

a
= 0.253

5.203
= 0.0486.

(b) Referencing the diagram showing where aphelion is, we have that the aphelion distance from
the Sun is a+ f . Plugging in a = 5.203 and f = 0.253 gives that Jupiter’s aphelion distance is
5.456 AU.

(c) Using Kepler’s Third Law in the context of our own solar system, P 2 = a3, and substituting
a = 5.203 gives that P = 11.87 years.

(d) From Exercise 9, Jupiter is moving fastest at perihelion and slowest at aphelion. Thus Jupiter
moves slowest at a distance of 5.456 AU and fastest at a distance of 4.950 AU from the Sun.

(e) As we are setting up the major axis along the x-axis, we make use of the equation
x2

a2
+

y2

b2
= 1.

We have a = 5.203. We will need to find b using a2 = f 2 + b2. Substituting in a = 5.203 and
f = 0.253 gives b = 5.197. Thus, the equation of Jupiter’s elliptical orbit in this construction

is
x2

5.2032
+

y2

5.1972
= 1.

Exercise 11

(a) Drawing the situation, as below, for the Hohmann transfer ellipse with semimajor axis along
the y-axis of length a, semiminor axis length b, focus length f , and two circular orbits of radii
r1 and r2, provides some key relationships. First, note that 2a = r1 + r2. Next, note that
f = a− r1. We can then find b once we find a and f .

Plugging in r1 = 21000 and r2 = 42300 into 2a = r1 + r2, we find that a = 31650. Then,
plugging in a = 31650 and r1 = 21000 into f = a− r1, we find that f = 10650. Then, subbing



a = 31650 and f = 10650 into a2 = f 2 + b2 we find that b = 29804.

Finally, substituting into the ellipse equation of form
x2

b2
+

y2

a2
= 1, we get the equation of the

Hohmann transfer’s elliptial orbit is
x2

298042
+

y2

316502
= 1.

For the circular orbits, note that both have centres at (0,−f) and the radii are r1 and r2. Thus
the initial circular orbit has equation x2 + (y + 10650)2 = 210002 and the final circular orbit
has equation x2 + (y + 10650)2 = 423002.

(b) We have the same relationships for the Hohmann transfer ellipse as in the previous problem,
except now with semimajor axis along the x-axis.

Plugging in r1 = 1 and r2 = 1.52 into 2a = r1 + r2, we find that a = 1.26. Then, plugging
in a = 1.26 and r1 = 1 into f = a − r1, we find that f = 0.26. Then, subbing a = 1.26 and
f = 0.26 into a2 = f 2 + b2 we find that b = 1.23.

Finally, substituting into the ellipse equation of form
x2

a2
+

y2

b2
= 1, we get the equation of the

Hohmann transfer’s elliptial orbit is
x2

1.262
+

y2

1.232
= 1.

For the circular orbits, note that both have centres at (−f, 0) and the radii are r1 and r2. Thus
the initial circular orbit has equation (x + 0.26)2 + y2 = 12 and the final circular orbit has
equation (x+ 0.26)2 + y2 = 1.522.


