
Grade 6 Math Circles

November 24, 2021

Computer Science Part 2 - Solutions

Do not worry about your solutions exactly matching what it written here. In computer science, there

are multiple ways to write programs depending on your preference. The efficiency of your program

is not a concern of these lessons, just that they work the way they are supposed to. To make sure

your code is correct, test it out with many different values to make sure it is outputting the correct

results.

Exercise Solutions

Activity 1

Write a program called evens that inputs any integer, and outputs the following:

• True, if the integer is even

• False, if the integer is odd

Activity 1 Solution

Our approach for this program is to use a conditional statement. If the integer is even, then the

remainder when its divided by 2 is 0. So that is our first condition, and it is true then we will

return True. If the integer is not even, then it must be odd, so we write else and return False.

This gives us the following code:

An even neater way this code could be written is by simply returning the bool value of the first

condition above, as shown below:

1



Activity 2

Write a program called number sum using recursion, that inputs two integer values, where the

second integer is greater than or equal to the first integer, and outputs the sum of every integer

between and including the integers.

(For example: number sum(−1, 5) outputs 14)

Activity 2 Solution

Our approach for this program is to start with the value of a, and then add each integer following

a until we get to b, using recursion. To do this, we will have a conditional statement with the

first condition being our base condition, so we can stop the recursion. We know that we want

the value of b to be the last integer we add, so when the value of a is equal to the value of

b, we will return a (or b), which will end the recursion. This also covers the case where the

initial values of a and b are equal, so the result of the program will just be that value. Our else

condition will then return the value of a plus the value of number sum(a + 1, b). This gives us

the following code:

Activity 3

Let a = “computer” and b = “science”. Determine the following.

(a) a[2]

(b) b[3 : 6]

(c) len(b)

(d) b not in a

2



Activity 3 Solution

(a) a[2] =⇒ “computer”[2] =⇒ “m”

(b) b[3 : 6] =⇒ “science”[3 : 6] =⇒ “enc”

(c) len(b) =⇒ len(“science”) =⇒ 7

(d) b not in a =⇒ “science” not in “computer” =⇒ True

Activity 4

Write the program number sum from Activity 2 using while loops.

Activity 4 Solution

Our approach for this program is very similar to our approach for Activity 2, where we will start

with the value of a, and then add each following integer until we reach b, but using a while loop

this time. First, we define a variable sum with the value 0, since we haven’t added any numbers

yet, to represent the sum of all the numbers. Then we want our loop to continue as long as

a ≤ b, because we don’t want values greater than b. Within the loop, we want to increase the

value of sum each iteration by the new value of a. Additionally, we want to increase the value

of a by 1 each time so that we get each value and the loop eventually ends. After the loop has

ended, we return the value of sum. This gives us the following code:

3



Activity 5

Write a program called occurences using for loops, that inputs a string of any length and a

character (string of length 1), and outputs the number of times the character appears in the

string.

As a bonus exercise, try also writing this program using while loops instead of for loops.

(For example: occurences(“math circles”, “c”) outputs 2)

Activity 5 Solution

Our approach using either for or while loops is to go through each character in string and

compare it with char. If the values are the same, then we will increase our counter, total, by 1.

If they are not equal, then nothing happens.

With a for loop, the value of x will automatically equal a new character in string during each

iteration, and will end the loop when there are no more characters. Similar to while loops, we

define total = 0 before the loop, instead of within the loop, so that the value won’t reset to 0

during each iteration. Within the loop, if the values of x and char are equal, then we increase

the value of total by 1, and then we don’t need any more conditions. After the loop has ended,

we return the value of total, which is the number of times char appears in string. This gives

us the following code:

With a while loop, we do nearly the same thing, the only difference is how we loop through

the characters in string. Unlike for loops, while loops don’t just automatically loop through

sequences or strings, so we have to be more specific. We do this by defining a new variable i,

which will represent the index of string, with the value 0 since the first character in strings have

the index 0. We then run the loop as long as the value of i is less than the length of string, since

the index of the last character of a string is 1 less than the length. This gives us the following

4



code:

5



Problem Set Solutions

1. Let a = “cleveland”, b = “level” and c = “thousand”. Determine the following.

(a) len(a + b)

(b) c not in b

(c) a[6 : 9] == c[5 : 8]

(d) (b in a) and (c in a)

Solution:

(a) len(a + b) =⇒ len(“cleveland” + “level”) =⇒ len(“clevelandlevel”) =⇒ 14

(b) c not in b =⇒ “thousand” not in “level” =⇒ True

(c) a[6 : 9] == c[5 : 8] =⇒ “cleveland”[6 : 9] == “thousand”[5 : 8] =⇒
“and” == “and” =⇒ True

(d) (b in a) and (c in a) =⇒ (“level” in “cleveland”) and (“thousand” in “cleveland”)

=⇒ True and False =⇒ False

2. The grading system for public schools in Ontario is given below:

Percent (%) Letter Grade

0− 49 F

50− 52 D−
53− 56 D

57− 59 D+

60− 62 C−
63− 66 C

67− 69 C+

70− 72 B−
73− 76 B

77− 79 B+

80− 86 A−
87− 94 A

95− 100 A+

6



Write a program called letter grade that inputs an integer percent (between 0 and 100), and

outputs the corresponding letter grade.

Solution: Our approach for this program will be to use a conditional statement with 13

conditions (one to represent each percent interval). If the integer percent is within an

interval, then we return the corresponding letter grade. This gives us the following code:

7



Note that since percent must be an integer between 0 and 100, we could replace the final

condition with:

3. Suppose we want a program called find sevens that inputs a positive 4-digit integer and

outputs the number of times that 7 appears in the integer.

(For example: find sevens(7017) outputs 2, find sevens(1234) outputs 0)

(a) Write the program using exclusively conditional statements (no loops or recursion).

(b) Write the program using loops.

(c) Write the program using recursion.

Solution:

(a) The first part of the program is similar to sum digits from Example 4 in the previous

lesson, because we want to isolate each digit of the integer. After that, we have 4

individual conditional statements because we want compare the value of each digit

to 7. If the values are equal, then we increase our counter, sevens, by 1. If the values

are not equal, then we do nothing. At the end, we return the value of sevens, which

is the number of times 7 appears in the integer num. This gives us the following

code:

8

https://www.cemc.uwaterloo.ca/events/mathcircles/2021-22/Fall/Junior6_Computer_Science_Part1_Nov17.pdf
https://www.cemc.uwaterloo.ca/events/mathcircles/2021-22/Fall/Junior6_Computer_Science_Part1_Nov17.pdf


(b) To write this program using loops, our approach is to cycle through each digit in

the integer and compare them to 7. Since we are dealing with an integer, we will

use a while loop. For each iteration of the loop, we take the digit in the ones place,

which we already know how to do. If the digit is equal 7, then we increase the value

of our counter sevens by 1. At the end of each iteration, we then take the integer

quotient when the integer is divided by 10, so that we have a new digit in the ones

place. The loop ends when the value of num is 0, and then we return sevens. This

gives us the following code:

9



(c) To write this program using recursion, our approach is very similar to part (b). We

take the digit in the ones place and then run it through our conditional statement.

If the digit is equal to 7, we return 1 plus the result of find sevens with the integer

quotient of num divided by 10. If the digit is not equal to 7 (else), then we just

return the result of find sevens with the integer quotient of num divided by 10.

The recursion ends when the value of num is 0, which is our base condition. This

gives us the following code:

4. A divisor is an integer that divides into another integer with a remainder of 0 (e.g. 3 is a

divisor of 12, but 5 is not). Write a program called divisors that inputs a positive integer and

individually prints each of its positive divisors. (Hint: Use loops)

10



Solution: Our approach to this program will be to use a while loop. Since n must be a

positive integer, we define the variable d, and as long as d ≤ n, we will continue the loop.

To see if each value of d is a divisor of n, we just have to see if the remainder of n divided

by d is 0, and will print the value of d if it is. We include print(d) within the loop because

we want each divisor of n to be printed. This gives us the following code:

5. Write a program called number of vowels using a for loop, that inputs a string of any length,

and outputs the number of vowels within the string. For this program, we are not counting “y”

as a vowel, just “a”, “e”, “i”, “o” and “u”. Note, that if we wanted to count “y” as a vowel,

then the changes would be quite simple.

(For example: number of vowels(“math circles”) outputs 3)

Solution: Similar to other problems with for loops, we want to run through the entire

string and check if each character is a vowel. If the character is a vowel, then we update

our counter total, which is the value we’ll return at the end. So, we define total = 0 before

the loop, so that the value does not reset to 0 during each iteration. Within the loop, we

have 5 conditional statements, one for each vowel. So each character gets checked, and we

only increase the value of total if one of the conditions is true. This gives us the following

code:

11



We could simplify this code by condensing the inside of the loop to only 1 conditional

statement. This is shown below:

Bonus Question

6. The Fibonacci sequence is a sequence of numbers beginning with 0 and 1, where each following

number in the sequence is the sum of the previous two numbers. For example, the third number

in the sequence would be 0 + 1 = 1, the fourth number in the sequence would be 1 + 1 = 2,

and so on. The first 10 numbers in the sequence are given below:

12



0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Suppose we want a program called fibonacci that inputs a positive integer, n, and outputs the

nth number in the Fibonacci sequence.

(For example: fibonacci(1) outputs 0, fibonacci(7) outputs 8)

(a) Write the program using while loops.

(b) Write the program using recursion.

Solution:

(a) This problem can seem daunting so it’s best to work in steps. We know the first

two numbers in the Fibonacci sequence are 0 and 1, so we define two variables to

represent them, n1 and n2.

We then can write a conditional statement to deal with all possible values of n. If

the value of n is 1, then we return the first number in the sequence. Similarly, if the

value of n is 2, then we return the second number in the sequence. Then, the else

condition is for any values of n ≥ 3, since we have to calculate the number, which

will require a while loop.

We know that we have to define a variable i for the loop condition beforehand, and

we set the value to 3 because that is the smallest possible value for n at this point.

We want the nth number in the sequence, so we set the loop condition as i <= n.

Within the loop, we define a temporary variable nth to represent the next number

in the sequence. After this, we update the values of n1 and n2, and increase the

value of i by 1, so we can repeat this process again.

After the loop ends, when i > n, we return the value of n2, which contains the nth

number of the sequence. This gives us the following code:

13



(b) For recursion, the code for this program is short but quite complicated, because it

requires 2 recursive commands.

Like all programs that use recursion, we have our conditional statement. In this

case, we will 2 base conditions because we already know the first 2 numbers in the

sequence. These two conditions, will be nearly identical to the ones above, where we

return 0 if the value of n is 1, and we return 1 if the value of n is 2.

For the else condition, which is for n >= 3, we simply return the sum of

fibonacci(n− 1) and fibonacci(n− 2). This is because any Fibonacci number after

the first two numbers is equal to the sum of the previous two numbers. This gives

us the following code:

14



15


