

Grade 7/8 Math Circles October 6th, 2021 **Probability - Solutions**

Lesson

Activity 1

Use the three formulas listed above to answer the following questions.

- (a) What is the probability of rolling an even number on a standard 6-sided die ('die' is singular for 'dice')?
- (b) What is the probability of drawing a face-card (Jack, Queen, King) from a standard deck of 52 cards?
- (c) How many times does the event A occur if out of 25 total outcomes, A has a probability of 0.64?
- (d) How many total outcomes are there if the event B occurs 54 times and has a probability of 0.4?

Activity 1 Solution

- (a) The probability of rolling an even number is $\frac{3}{6} = \frac{1}{2} = 0.5$
- (b) The probability of drawing a face-card is $\frac{12}{52} = \frac{3}{13}$
- (c) Since S = 25 and P(A) = 0.64, we have $|A| = S \times P(A) = 25 \times 0.64 = 16$
- (d) Since |B| = 54 and P(B) = 0.4, we have $S = \frac{|B|}{P(B)} = \frac{54}{0.4} = 135$

Activity 2

Suppose we have a standard deck of 52 cards and we randomly draw a card. Determine the probability of the following intersection of events. Show your work.

- (a) $A \cap B$ = the card is a **Spade** AND the card is a **7**.
- (b) $A \cap B =$ the card is a **Spade** AND the card is a **Diamond**.
- (c) $A \cap B$ = the card is greater than **5** AND the card is not a face-card.

Activity 2 Solution

- (a) Of the 52 cards in the deck, there is only 1 card that is both a Spade and a 7 (the 7 of Spades), so $P(A \cap B) = \frac{1}{52}$
- (b) Of the 52 cards in the deck, there are 0 cards that are both a Spade and a Diamond, so $P(A\cap B)=\frac{0}{52}=0$
- (c) Of the 52 cards in the deck, there are 20 cards that are greater than 5 and not face-cards (6, 7, 8, 9, 10 of each suit), so $P(A \cap B) = \frac{20}{52} = \frac{5}{13}$

Activity 3

Determine if the following events are independent or dependent. If they are independent then solve for the probability of the intersection, $A \cap B$.

- (a) When flipping a coin, A =first flip is Heads, and B =second flip is Tails.
- (b) When flipping a coin, A =first flip is Heads, and B =second flip is Heads.
- (c) When rolling a 6-sided die, A = value is even, and B = value is 2.
- (d) In a student council election, there are 10 candidates, with 4 of them in grade 7 and 6 of them in grade 8. There are two positions available: President and Treasurer; with A = the President is in grade 7, and B = the Treasurer is in grade 8.

Activity 3 Solution

- (a) The outcomes of different coin flips do not affect one another, so the events A and B are independent. Thus, $P(A \cap B) = P(A) \times P(B) = 0.5 \times 0.5 = 0.25$.
- (b) The outcomes of different coin flips do not affect one another, so the events A and B are independent. Thus, $P(A \cap B) = P(A) \times P(B) = 0.5 \times 0.5 = 0.25$
- (c) Since the events are for the same dice-roll, instead of different dice-rolls, the event A will certainly affect B, and vice versa, so the events are dependent.
- (d) The outcome of either position will result in 1 less person being eligible for the other position, which will affect the probability. Thus, the events A and B are dependent.

Activity 4

Find $P(A \mid B)$ for each of the following using the formulas on the previous page.

- (a) $P(A \cap B) = 0.4$ and P(B) = 0.6
- (b) $P(A \cap B) = 0$ and P(B) = 0.7
- (c) $P(A \cap B) = 0.5$ and P(B) = 1

Activity 4 Solution

(a)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.4}{0.6} = 0.24$$

(b)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{0.7} = 0$$

(c)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.5}{1} = 0.5$$

- 1. A 6-sided die is rolled, where each side has a number between 1 and 6.
 - (a) What is the probability of rolling a 2?
 - (b) What is the probability of rolling a 6?
 - (c) What is the probability of rolling a 1 or 5?
 - (d) What is the probability of rolling a number greater than or equal to 3?

- (a) The probability of rolling a 2 is $\frac{1}{6}$
- (b) The probability of rolling a 6 is $\frac{1}{6}$
- (c) The probability of rolling a 1 or 5 is $\frac{2}{6}$ or $\frac{1}{3}$
- (d) The probability of rolling a number greater than or equal to 3 is $\frac{4}{6}$ or $\frac{2}{3}$
- 2. There are 50 monkeys in an exhibit at the zoo. Of these 50 monkeys, 24 are male and the remaining are females. Suppose we were to randomly pick a monkey, with the event A = the monkey is a male.
 - (a) Determine P(A).
 - (b) What is \overline{A} and $|\overline{A}|$?
 - (c) Use any method to determine $P(\overline{A})$.

Solution:

(a)
$$P(A) = \frac{24}{50} = 0.48$$

(b) \overline{A} = the monkey is a female, and $|\overline{A}| = 26$

(c)
$$P(\overline{A}) = \frac{26}{50} = 0.52$$
 or $P(\overline{A}) = 1 - P(A) = 1 - 0.48 = 0.52$

- 3. There are two types of birds in a bird sanctuary: Blue Jays and Cardinals. Let the event A = the bird is a Cardinal, with |A| = 42 and P(A) = 0.6.
 - (a) What is \overline{A} and $P(\overline{A})$?
 - (b) Determine S.
 - (c) Use any method to determine $|\overline{A}|$.

- (a) \overline{A} = the bird is a Blue Jay, and $P(\overline{A}) = 1 P(A) = 1 0.6 = 0.4$
- (b) Rewriting the formula $P(A) = \frac{|A|}{S}$ gives $S = \frac{|A|}{P(A)} = \frac{42}{0.6} = 70$
- (c) $|\overline{A}| = S \overline{A} = 70 42 = 28$, or $|\overline{A}| = S \times P(\overline{A}) = 70 \times 0.4 = 28$
- 4. Suppose we have two independent events A and B, where P(A) = 0.35 and P(B) = 0.8. Determine $P(A \cap B)$.

Solution: Since A and B are independent, $P(A \cap B) = P(A) \times P(B) = 0.35 \times 0.8 = 0.28$

5. Suppose we have two events A and B, where $P(A \cap B) = 0.3$ and P(B) = 0.75. Determine $P(A \mid B)$.

Solution: $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.3}{0.75} = 0.4$

- 6. For two events A and B, we have P(A) = 0.5, P(B) = 0.6, and $P(A \cap B) = 0.3$.
 - (a) Determine $P(A \mid B)$.
 - (b) Determine $P(B \mid A)$.
 - (c) Using the results from parts (a) and (b), are A and B independent or dependent?

(a)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.3}{0.6} = 0.5$$

(b)
$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{0.3}{0.5} = 0.6$$

- (c) Since $P(A \mid B) = P(A)$, $P(B \mid A) = P(B)$, and $P(A \cap B) = P(A) \times P(B)$, we know that A and B must be independent.
- 7. In a sack of marbles, the marbles are categorized by the following attributes that have no influence on one another: the marbles are either transparent or **opaque**; and the marbles are either red or blue. The events are A = the marble is **opaque**, and B = the marble is red. There are a total of 125 marbles in the sack, with P(A) = 0.56 and $P(\overline{B}) = 0.4$.
 - (a) Determine S, |A|, $|\overline{A}|$, |B|, and $|\overline{B}|$.
 - (b) Are the events A and B independent or dependent? Explain.
 - (c) Determine $P(A \cap B)$, $P(A \cap \overline{B})$, $P(\overline{A} \cap B)$, and $P(\overline{A} \cap \overline{B})$.
 - (d) What is the sum of the probabilities from part (c)? Why is this the case?

(a)
$$S = 125$$

$$|A| = S \times P(A) = 125 \times 0.56 = 70$$

$$|\overline{A}| = S - |A| = 125 - 70 = 55$$

$$|\overline{B}| = S \times P(\overline{B}) = 125 \times 0.4 = 50$$

$$|B| = S - |\overline{B}| = 125 - 50 = 75$$

- (b) The events A and B are independent because whether a marble is *transparent* or **opaque** does not affect the colour of the marble.
- (c) Since the events are all independent:

$$P(A \cap B) = P(A) \times P(B) = 0.56 \times [1 - P(\overline{B})] = 0.56 \times [1 - 0.4] = 0.56 \times 0.6 = 0.336$$
$$P(A \cap \overline{B}) = P(A) \times P(\overline{B}) = 0.56 \times 0.4 = 0.224$$

$$P(\overline{A} \cap B) = P(\overline{A}) \times P(B) = [1 - P(A)] \times [1 - P(\overline{B})] = [1 - 0.56] \times [1 - 0.4] = 0.44 \times 0.6 = 0.264$$

$$P(\overline{A} \cap \overline{B}) = P(\overline{A}) \times P(\overline{B}) = [1 - P(A)] \times 0.4 = [1 - 0.56] \times 0.4 = 0.44 \times 0.4 = 0.176$$

- (d) $P(A \cap B) + P(A \cap \overline{B}) + P(\overline{A} \cap B) + P(\overline{A} \cap \overline{B}) = 0.336 + 0.224 + 0.264 + 0.176 = 1$ The sum of these probabilities is 1 because these are all the possible combinations we can have for the marbles; **opaque** and red, **opaque** and blue, *transparent* and red, or *transparent* and blue.
- 8. Use the Number of Pairings formula to determine how many pairings there are for the given number of people.
 - (a) 1 person
 - (b) 2 people
 - (c) 10 people
 - (d) 50 people
 - (e) 100 people

(a) For
$$n = 1$$
, Number of Pairings $= \frac{n \times (n-1)}{2} = \frac{1 \times (1-1)}{2} = \frac{1 \times 0}{2} = \frac{0}{2} = 0$

(b) For
$$n = 2$$
, Number of Pairings $= \frac{n \times (n-1)}{2} = \frac{2 \times (2-1)}{2} = \frac{2 \times 1}{2} = \frac{2}{2} = 1$

(c) For
$$n = 10$$
, Number of Pairings $= \frac{n \times (n-1)}{2} = \frac{10 \times (10-1)}{2} = \frac{10 \times 9}{2} = \frac{90}{2} = 45$

(d) For
$$n = 50$$
, Number of Pairings $=$ $\frac{n \times (n-1)}{2} = \frac{50 \times (50-1)}{2} = \frac{50 \times 49}{2} = \frac{2450}{2} = \frac{1225}{2} =$

(e) For
$$n = 100$$
, Number of Pairings $= \frac{n \times (n-1)}{2} = \frac{100 \times (100-1)}{2} = \frac{100 \times 99}{2} = \frac{9900}{2} = 4950$

- 9. Use the general formula for the Birthday Problem to determine the probability that at least 2 people have the same birthday for the given number of people. Round to 4 decimal places.
 - (a) 3 people
 - (b) 5 people
 - (c) 8 people
 - (d) 10 people

Solution:

(a) For
$$n = 3$$
, $P(A) = 1 - \left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \right] = 1 - 0.9918 = 0.0082$

(b) For
$$n = 5$$
, $P(A) = 1 - \left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \frac{361}{365} \right] = 1 - 0.9729 = 0.0271$

(c) For
$$n = 8$$
, $P(A) = 1 - \left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \frac{361}{365} \times \frac{360}{365} \times \frac{359}{365} \times \frac{358}{365} \right] = 1 - 0.9257 = 0.0743$

(d) For
$$n = 10$$
, $P(A) = 1 - \left[\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{362}{365} \times \frac{361}{365} \times \frac{360}{365} \times \frac{359}{365} \times \frac{358}{365} \times \frac{357}{365} \times \frac{356}{365} \right] = 1 - 0.8831 = 0.1169$

Bonus Questions

- 10. A new backpack is released that comes in 1 of 50 different colours. Every student in a school orders exactly one of these backpacks online. Unfortunately, they are not given a choice of colour and the colour of the backpack is picked at random, where each of the 50 colours have the same likelihood of being picked. Suppose that for a given number of students, we want to find the probability for the event A = at least 2 people have the same coloured backpack.
 - (a) Using a similar method to the Birthday Problem, find a general formula for P(A) where n is the number of people.
 - (b) Determine P(A) for n = 10. Round to 4 decimal places.
 - (c) For what value of n is P(A) = 0.45 approximately?

Solution:

(a) For
$$n =$$
the number of people, $P(A) = 1 - \left[\frac{50}{50} \times \frac{49}{50} \times ... \times \frac{50 - n + 1}{50} \right]$

(b) For
$$n = 10$$
, $P(A) = 1 - \left[\frac{50}{50} \times \frac{49}{50} \times \frac{48}{50} \times \frac{47}{50} \times \frac{46}{50} \times \frac{45}{50} \times \frac{44}{50} \times \frac{43}{50} \times \frac{42}{50} \times \frac{41}{50} \right] = 1 - 0.3817 = 0.6183$

(c) For
$$n=8$$
, $P(A)=1-\left[\frac{50}{50}\times\frac{49}{50}\times\frac{48}{50}\times\frac{47}{50}\times\frac{46}{50}\times\frac{45}{50}\times\frac{44}{50}\times\frac{43}{50}\right]=1-0.5542=0.4458$ which approximates to 0.45.

11. Determine the general formula for the Birthday Problem in the case of a leap year (366 days in a year).

Solution: For
$$n = \text{the number of people}$$
, $P(A) = 1 - \left[\frac{366}{366} \times \frac{365}{366} \times ... \times \frac{366 - n + 1}{366} \right]$