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Lesson 1: Rational and Irrational Numbers

§1 Introduction

Rational numbers are one of the most fundamental objects of mathematics. If we let

N = {1, 2, 3, . . .} and Z = {. . .− 2,−1, 0, 1, 2, . . .}

denote the natural numbers and the integers, then the set of rational numbers, Q, consists of all

quotients of the form m
n

, where m ∈ Z and n ∈ N. Thus, for example, −3, 0, 4
3

and 1
7

are rational,

while numbers like
√

2, log2 3 and cos(1◦) are irrational . . . or maybe not? How do we know for

certain that a particular number, like π, cannot be written in the form m
n

for some non-zero integers

m and n? It turns out that this question is rather difficult. For example, only in the 20th century it

was proved that
√

2
√
2 ≈ 1.63 is irrational, and it is still not known whether ππ ≈ 36.46 is irrational

(or not). In this lesson, we will learn about proofs of irrationality, practice some of them, and then

discuss various open problems. Perhaps, some day you will solve one of them, thus inscribing your

name into the history of mathematics!

§2 The First Known Irrational Number

The first ever irrational number,
√

2, was discovered in Ancient Greece, and the legend says that

the person who proved its irrationality payed for the discovery with his life. Pythagoreans believed

that numbers were the essence of all things and, of course, the fact that
√

2 is irrational shook the

foundations of their philosophy. Hence they’ve taken the pledge to keep the proof outlined below in

secret.

Theorem 1

The number
√

2 is irrational.

Proof. Assume, for a contradiction, that
√

2 is rational. Then
√

2 = m
n

for some integer m and

positive integer n. Certainly, we can assume that the fraction m
n

is written in lowest terms. But then,
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Figure 1: The length of the diagonal of a square with side length one is
√

2

since it is written in lowest terms, m and n cannot both be even. Thus, either m is odd or n is odd.

Let us remember this fact, as it will become very important to us later.

Let us multiply both sides of the equation
√

2 = m
n

by n so to obtain
√

2 · n = m. But then(√
2 · n

)2
= m2, and so 2n2 = m2. Thus we see that the number m2 is even. Since m ·m is even, we

see that m must be even as well. Hence there must exist an integer k such that m = 2k.

Now, let us substitute m = 2k into the equation 2n2 = m2, so to obtain 2n2 = 4k2. Dividing both

sides by 2, we obtain n2 = 2k2. Thus we see that the number n2 is even. Since n · n is even, we

see that n must be even as well. Of course, the fact that m and n are both even contradicts our

observation that either m is odd or n is odd. Thus we see that
√

2 is irrational.

Exercise 1 (Every p-th Root of 2 Is Irrational)

Prove that, for every integer p ≥ 2, the number p
√

2 is irrational.

Exercise 1 Solution

Let p ≥ 2 be an integer and assume for a contradiction that p
√

2 is rational. Then p
√

2 = m
n

for

some integer m and positive integer n. Certainly, we can assume that the fraction m
n

is written

in lowest terms. But then, since it is written in lowest terms, m and n cannot both be even.

Thus, either m is odd or n is odd. Let us remember this fact, as it will become very important

to us later.
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Let us multiply both sides of the equation p
√

2 = m
n

by n so to obtain p
√

2 · n = m. But then(
p
√

2 · n
)p

= mp, and so 2np = mp. Thus we see that the number mp is even. Since mp is even,

we see that m must be even as well. Hence there must exist an integer k such that m = 2k.

Now, let us substitute m = 2k into the equation 2np = mp, so to obtain 2np = 2pkp. Dividing

both sides by 2, we obtain np = 2p−1kp. Thus we see that the number np is even. Since np is

even, we see that n must be even as well. Of course, the fact that m and n are even contradicts

our observation that either m is odd or n is odd. Thus we see that p
√

2 is irrational.

Plato’s mathematics tutor, Theodorus of Cerene (born 470 B.C.), is said to extend the above irra-

tionality result to various other numbers, including
√

3,
√

5,
√

6 and
√

7, while another student of

Theodorus, Theaetetus of Athens (415–369 B.C.), proved the following more general result, which

we leave to you as a (challenging!) exercise.

Exercise 2 (Theaetetus’ Theorem)

Let q be a positive integer. Prove that if q is not a perfect square, then the number
√
q is

irrational.

Hint: Let t2 be the largest perfect square that divides q, and write q = s · t2 for some positive

integer s. Explain why s > 1 and why the only perfect square that divides s is 1.

Exercise 2 Solution

Let t2, with t ∈ N, denote the largest perfect square that divides q. Then q = s · t2 for some

positive integer s. Notice that s > 1, for otherwise q would be a perfect square. Further, if a

perfect square r2 divides s, then (rt)2 divides q, and since t2 is the largest perfect square that

divides q, we must have r2 = 1. Thus, the largest perfect square that divides s is 1.

Now, assume for a contradiction that
√
q = t

√
s is rational. Then

√
s = m

n
for some integer m

and positive integer n. Certainly, we can assume that the fraction m
n

is written in lowest terms.

Thus, m and n have no divisors in common.

Let us multiply both sides of the equation
√
s = m

n
by n so to obtain

√
s · n = m. But then

(
√
s · n)

2
= m2, and so sn2 = m2. Since s divides m2, we see that s and m share a common

prime divisor p. Hence there must exist an integer k such that m = pk.

Now, let us substitute m = pk into the equation sn2 = m2, so to obtain sn2 = p2k2. Dividing

both sides by p, we obtain (s/p)n2 = pk2. Since p does not divide s/p, it must be the case that
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p divides n2. Since p is prime, we see that n is divisible by p, which means that m and n share a

common divisor. Of course, this contradicts the fact that m and n have no divisors in common.

Some irrationality results follow from certain properties of the rationals. For example, you may know

that if r and s are both rational numbers, then

• r + s is rational;

• r − s is rational;

• r · s is rational; and

• r/s is rational, provided that s 6= 0.

Try using these properties to solve the following exercise.

Exercise 3 (The Golden Ratio Is Irrational)

Prove each of the following:

(a) Prove that if a is rational and b is irrational, then a+ b is irrational.

(b) Prove that if a 6= 0 is rational and b is irrational, then ab is irrational.

(c) Use Exercise 2, as well as Parts (a) and (b), to prove that the golden ratio 1+
√
5

2
is irrational.

Exercise 3 Solution

(a) Assume, for a contradiction, that a + b is rational. Then b = (a + b) − a, and since the

difference of two rational numbers is rational, it must be the case that b is rational. This

contradicts our assumption that b is irrational.

(b) Assume, for a contradiction, that ab is rational. Since a 6= 0, we see that b = ab
a

, and since

the ratio of two rational numbers is rational, it must be the case that b is rational. This

contradicts our assumption that b is irrational.

(c) Since 5 is not a perfect square, it follows from Exercise 2 that
√

5 is irrational. Since
√

5

is irrational, it follows from Part (a) that 1 +
√

5 is irrational. Since 1 +
√

5 is irrational,

then it follows from Part (b) that 1
2
· (1 +

√
5) is irrational.

If you would like to learn about mathematics in Ancient Greece and how Eudoxus of Cnidos (408–355
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B.C.) resolved the crisis in the foundations of mathematics, consider reading Chapter 3 in Burton’s

History of Mathematics [1].

§3 Logarithms and Irrationality

Apart from square roots, other objects for which it is possible to establish irrationality results are

logarithms. Recall that, if a and b are positive real numbers, with a 6= 1, then we refer to the number

x such that

ax = b

as the logarithm of b in base a, and denote it by x = loga b. For example,

• since 22 = 4, we see that log2 4 = 2;

• since 3−2 = 1
9
, we see that log3

1
9

= −2;

• since 251/2 = 5, we see that log25 5 = 1
2
.

In each of the examples above, the value of logarithms are especially nice, but it’s not always that

way. For example, while the equation 2x = 3 does have a solution (see Figure 2 below), it seems that

it can only be approximated, but not written down explicitly as a rational number. In fact, up to 7

decimal places, we have log2 3 ≈ 1.5849625.

Figure 2: The graphs of f(x) = 2x and g(x) = 3 intersect at x ≈ 1.5849625

If a, b and c are real numbers, with a 6= 1, then the logarithmic functions satisfy the following

important properties:

• loga a = 1

• aloga b = b
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• loga(bc) = loga b+ loga c

All of these properties follows from the exponent rules, and we will use these properties to solve

exercises and prove theorems outlined below.

In what follows, we will restrict our attention to the case when a ≥ 2 and b ≥ 2 are integers. Notice

how log2 3 seems to be irrational (we will prove this in Theorem 2), while log2 4 = 2 is rational. Let

us explore what values of a and b guarantee that loga b is irrational.

Theorem 2

The number log2 3 is irrational.

Proof. Suppose not and log2 3 = m
n

for some m ∈ Z and n ∈ N. Since log2 3 ≈ 1.58 > 0, we see that

m ∈ N. Thus,

n log2 3 = m

2n log2 3 = 2m(
2log2 3

)n
= 2m

3n = 2m

Since the number on the left-hand side is odd while the number on the right-hand side is even, we

reach a contradiction. Thus, log2 3 is irrational.

Exercise 4

Prove that the number log3(15) is irrational.

Exercise 4 Solution

First, we prove that log3 5 is irrational. Assume, for a contradiction, that this is not the case,

and log3 5 = m
n

for some m ∈ Z and n ∈ N. Since log3 5 ≈ 1.46 > 0, we see that m ∈ N. Thus,

n log3 5 = m

3n log3 5 = 3m
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(
3log3 5

)n
= 3m

5n = 3m

Since the number on the left-hand side is divisible by 5, while the number on the right-hand

side is not divisible by 5, we reach a contradiction.

Now, since log3 5 is irrational, it follows from Part (a) of Exercise 2 that

1 + log3 5 = log3 3 + log3 5 = log3(15)

is irrational.

The following result provides a useful criterion for determining whether the number loga b is irrational.

Exercise 5

Let a ≥ 2 and b ≥ 2 be integers. Prove that if b 6= n
√
am for all m,n ∈ N, then loga b is irrational.

Exercise 5 Solution

Let a ≥ 2 and b ≥ 2 be integers such that b 6= n
√
am for all m,n ∈ N. Assume, for a contradiction,

that loga b is rational, and so loga b = p
q

for some p ∈ Z and q ∈ N. Since b ≥ 2, we see that

loga b > 0, and so m ∈ N. Thus,

q loga b = p

aq loga b = ap(
aloga b

)q
= ap

bq = ap

b = q
√
ap

This observation contradicts our assumption that b 6= n
√
am for all m,n ∈ N.

If you would like to learn more about logarithmic functions and their properties, consider completing

the module on Advanced Functions and Pre-Calculus in the CEMC Courseware.
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§4 Irrationality of Certain Trigonometric Quantities

We’ve explored irrationality of radicals and logarithms. What about trigonometric quantities? In

this section, we will prove the following theorem.

Theorem 3

Let α be a real number. If cosα is rational, then cos(nα) is rational for every positive integer n.

This result gives us a useful criterion for determining some irrational values of cosα. More precisely, if

we can show that, for a particular angle α, the value cos(nα) is irrational for some positive integer n,

then cosα must also be irrational. Try applying this criterion in the following exercise.

Exercise 6

Use Theorem 3 to prove that cos(1◦) is irrational.

Exercise 6 Solution

Let α = 1◦, and assume that cosα is rational. Take n = 30. Then it follows from Theorem 3

that cos(nα) = cos(30◦) =
√
3
2

is rational, which is false. Thus, cos(1◦) is irrational.

We will now turn our attention to the proof of Theorem 3. For this purpose, we defined so-called

Chebyshev polynomials as follows:

T0(x) = 1

T1(x) = x

Tn(x) = (2x)Tn−1(x)− Tn−2(x)

for every integer n ≥ 2. Thus, for example, we see that

T2(x) = (2x)T1(x)− T0(x)

= (2x) · x− 1

= 2x2 − 1

8



and

T3(x) = (2x)T2(x)− T1(x)

= (2x)(2x2 − 1)− x

= 4x3 − 3x

Exercise 7

Determine T4(x) and T5(x).

Exercise 7 Solution

We have

T4(x) = (2x)T3(x)− T2(x)

= (2x)(4x3 − 3x)− (2x2 − 1)

= 8x4 − 8x2 + 1

and

T5(x) = (2x)T4(x)− T3(x)

= (2x)(8x4 − 8x2 + 1)− (4x3 − 3x)

= 16x5 − 20x3 + 5x

As the following theorem shows, Chebyshev polynomials are intimately connected to trigonometric

quantities.

Theorem 4

For every real number α and for every non-negative integer n, Tn(cosα) = cos(nα).

Proof. Let α be a real number. Observe that, for n = 0,

T0(cosα) = 1 = cos(0 · α)
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so the statement is true in this case. Further, for n = 1,

T1(cosα) = cosα = cos(1 · α)

so once again the statement is true.

Next, let n ≥ 2 be an integer, and recall the trigonometric identities

cos(a− b) = cos a cos b + sin a sin b

cos(a+ b) = cos a cos b − sin a sin b

which hold for all real numbers a and b. Adding these two equalities together, we obtain the identity

cos(a+ b) + cos(a− b) = 2 cos a cos b

Taking a = (n− 1)α and b = α, we find that

cos(nα) + cos((n− 2)α) = (2 cosα) · cos((n− 1)α)

which is equivalent to

(2 cosα) · cos((n− 1)α)− cos((n− 2)α) = cos(nα)

Thus,

T2(cosα) = (2 cosα)T1(cosα)− T0(cosα)

= (2 cosα) · cos(α)− cos(0)

= cos(2α)

T3(cosα) = (2 cosα)T2(cosα)− T1(cosα)

= (2 cosα) · cos(2α)− cos(α)

= cos(3α)

Proceeding in the same fashion for T4(x), T5(x), . . ., the result follows.

We are now ready to prove the main theorem of this section, Theorem 3.
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Proof of Theorem 3. Let α be a real number, and assume that cosα is rational. Then it follows

from Theorem 4 that, for every positive integer n, cos(nα) = Tn(cosα). In other words, the value

cos(nα) is the result of evaluation of a polynomial Tn(x), all of whose coefficients are rational, at the

rational number cosα. Since the product, sum or difference of rational numbers is rational, we see

that Tn(cosα) must be rational.

Exercise 8

Use Theorem 3 to prove that sin(1◦) is irrational.

Hint: Use the trigonometric identity sin(90◦ + a) = cos a, which holds for all real numbers a.

Exercise 8 Solution

Let α = 1◦ = π
180

, and assume that sinα is rational. Then it follows from the trigonometric

identity sin(90◦ + a) = cos a that

sinα = sin (90◦ + α− 90◦) = cos (α− 90◦) = cos (1◦ − 90◦) = cos (−89◦) = cos (89◦)

Thus, for β = 89◦, the number cos β is rational. Now, let n = 30. Then

cos (nβ) = cos (2670◦) = cos (7 · 360◦ + 150◦) = cos (150◦) = −
√

3

2

Note how cos(nβ) is irrational. This observation contradicts Theorem 3, which asserts that

cos(nβ) must be rational.

In Exercise 6 we prove the irrationality of cosα for the angle α = 1◦. Notice that, when expressed in

radians, this angle is a rational multiple of π, because 1◦ = 1
180
· π. In 1946, a Swiss mathematician

Hugo Hadwiger explained what angles α that are rational multiples of π have either cosα, or sinα,

or tanα rational.
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Figure 3: Scene from Mathooger’s video on the proof of Hadwiger’s Theorem

Theorem 5 (Hadwiger’s Theorem)

Let r be a rational number such that 0 ≤ r < 2. Suppose that the angle α = rπ has the property

that either cosα, or sinα, or tanα is rational. Then,

α ∈
{

0,
π

6
,
π

4
,
π

3
,
π

2
,

2π

3
,

3π

4
,

5π

6
, π,

7π

6
,

5π

4
,

4π

3
,

3π

2
,

5π

3
,

7π

4
,

11π

6

}

Proof. A gorgeous proof of this theorem is explained in Burkard Polster’s video What does this prove?

Some of the most gorgeous visual “shrink” proofs ever invented [3]. Make sure to watch this video,

as well as other amazing videos from Polster’s YouTube channel called Mathologer !

§5 An Interesting Criterion for Irrationality

It turns out that all rational numbers satisfy a useful property, which we will outline below.

12



Theorem 6

Let r be a rational number. There exists a positive number C, which depends only on r, such

that for every rational number p
q
6= r, with q ∈ N, the inequality∣∣∣∣r − p

q

∣∣∣∣ ≥ C

q

is satisfied.

Proof. Let r = m
n

be a rational number, with n ∈ N, and let p
q
6= r be a rational number. Since

m
n
6= p

q
, we see that mq−np 6= 0. Since mq−np is an integer, we conclude that |mq−np| ≥ 1. Thus,∣∣∣∣mn − p

q

∣∣∣∣ =
|mq − np|

nq
≥ 1

nq
=
C

q

where C = 1
n
. Notice how the value of C depends only on r.

Since every rational number must satisfy this criterion, it must be the case that every real number

that does not satisfy it must immediately be irrational. We summarize this observation as follows.

Criterion for Irrationality

Let r be a real number. If for every positive number C there exists a rational number p
q

such

that

0 <

∣∣∣∣r − p

q

∣∣∣∣ < C

q

then r is irrational.

This result turns out to be quite useful to prove irrationalities of certain numbers. In 1973, a French

mathematician Roger Apéry used this criterion to prove that the number

A = 1 +
1

23
+

1

33
+

1

43
+ · · · ≈ 1.202

is irrational [2]. More precisely, he proved that there exists a positive number D and an infinite
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sequence of rational numbers p1
q1
, p2
q2
, . . ., with 1 ≤ q1 < q2 < . . ., such that

0 <

∣∣∣∣A− pn
qn

∣∣∣∣ < D

q1.08n

In the following exercise, you are asked to deduce the irrationality of A from Apéry’s result.

Exercise 9

Suppose that, for a real number A, there exists a positive number D and an infinite sequence

of distinct rational numbers p1
q1
, p2
q2
, . . ., with 1 ≤ q1 < q2 < . . ., such that

0 <

∣∣∣∣A− pn
qn

∣∣∣∣ < D

q1.08n

Use the above criterion for irrationality to prove that A is irrational.

Exercise 9 Solution

Let C be a positive real number. Our goal is to show that there exists a rational number p
q

such

that

0 <

∣∣∣∣α− p

q

∣∣∣∣ < C

q

Since the sequence p1
q1
, p2
q2
, . . . found by Apéry is infinite, we can choose p

q
= pn

qn
with the de-

nominator q so large that q ≥ (D/C)12.5. This inequality is equivalent to q1.08 ≥ (D/C)q.

Consequently,

0 <

∣∣∣∣A− p

q

∣∣∣∣ < D

q1.08
≤ D

(D/C)q
=
C

q

Today, the number A is known as Apéry’s constant, and it is still not known whether the number

1 + 2−s + 3−s + 4−s + · · · is irrational for s = 5, or s = 7, or any odd integer s ≥ 5. It is known,

however, that the number 1 + 2−s + 3−s + 4−s + · · · is irrational for every even integer s ≥ 2. We

will talk a little bit about this result in Lesson 2.

While we do know that certain famous numbers, like π (Lambert, 1761) or eπ are irrational (Gelfond-

Schneider Theorem, 1934), for many numbers, like eπ, π + e, ππ, 2e, πe, π
√
2 or lnπ, the question

still remains open.
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