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In our first lesson—Cardinality I—we defined what it meant for two sets to have the same size or

cardinality. Specifically, sets A and B are said to have the same cardinality or be in one-to-one

correspondence if there exists a bijective function f : A→ B. In this case, we write |A| = |B|.

We showed that the sets of natural numbers, integers, and rational numbers all have the same

cardinality. These are examples of countable sets – their elements can be written in a list.

|N| = |Z| = |Q|.

You also showed in Problem Set I that the interval (0, 1) and the entire real number line have the

same cardinality, but—as we saw in the notes—this cardinality is strictly larger than that of N. We

say that (0, 1) and R are uncountable sets.

|(0, 1)| = |R|.

Exercise 1: We introduced terminology to describe sets of different cardinalities. To refresh

your memory of these terms, complete the following definitions from our first lesson.

(i) A set A is finite if .

(ii) A set A is countably infinite if .

(iii) A set A is countable if .

(iv) A set A is uncountable if .

In our live session, we investigated the cardinality of a union of sets. Recall that if A and B are sets,

then the union of A and B is set A ∪B consisting of all elements in A or B (or both.) That is,

A ∪B = {x : x ∈ A or x ∈ B} .
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We also showed the following, which may be useful to you on this week’s problem set:

Proposition 1:

(i) If A and B are countable sets, then is A ∪B countable.

(ii) More generally, if A1, A2, A3, . . . is a countable collection of countable sets, then

∞⋃
n=1

An = A1 ∪ A2 ∪ A3 ∪ · · ·

is countable.

In this lesson will will continue to explore the cardinality of sets. We will learn how to construct new

and interesting sets from familiar examples and determine the cardinalities of these sets. Specifically,

we’ll study the cardinalities of Cartesian products and power sets.

Subsets

We’ll begin this section with a definition that you may remember from the Lesson 1 Problem Set.

Definition 1: Let A and B be sets. We say that A is a subset of B if every element of A is

also an element of B. In this case, we write A ⊆ B.

Example 1

1. {1, 2} ⊆ N, since 1 ∈ N and 2 ∈ N. However, {0, 1} is not a subset of N since 0 /∈ N. In

this case, we write {0, 1} 6⊆ N.

2. N ⊆ Z, since every natural number is also an integer.

3. More generally, Zn ⊆ N ⊆ Z ⊆ Q ⊆ R.

4. For every set A, we have A ⊆ A.

5. For every set A, the empty set, ∅, is a subset of A.
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If this seems odd, think of it this way: if there were a set A that didn’t have ∅ as a subset,

it would mean that there is an element of ∅ that isn’t in A. But since ∅ has no elements,

this is impossible. So indeed, ∅ ⊆ A.

Note: The notation “⊆” used for subsets should remind you of the notation “≤” used for comparing

the size of two real numbers. This is intentional – A ⊆ B means that B contains everything in A

and maybe more, hence A is, in some sense, less than or equal to B.

Exercise 2: Is it possible for a set to have the same cardinality as one of its subsets? The

answer is “yes”, since for any set A, we have A ⊆ A and, of course, |A| = |A|. But what if we

insist that the set and subset not be equal? That is...

Do there exist sets A and B such that A ⊆ B, A 6= B, and |A| = |B|?

Does the answer change if we require A and B to be finite sets?

Power Sets

Given a set A, we can define a new set, P(A), whose elements are all subsets of A. This set is known

as the power set of A.

Definition 2: The power set of a set A is the set consisting of all subsets of A:

P(A) = {S : S ⊆ A} .

Example 2

(a) Consider the set A = {1} containing just one element. This set has only two subsets: ∅
and A itself. Thus, P(A) is the 2-element set

P(A) = {∅, {1}} .
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(b) If A = {0, 1}, then the subsets of A are ∅, {0}, {1}, and {0, 1}. Thus, P(A) is the

4-element set

P(A) = {∅, {0}, {1}, {0, 1}} .

(c) If A = ∅, then the only subset of A is A itself, hence P(A) = {∅}. Note that the set {∅}
isn’t empty – it’s a set containing exactly one element: the empty set. Thus, |P(A)| = 1.

Given the cardinality of a set A, what can be said about the cardinality of P(A)? The above examples

provide some insight:

Cardinality of A 0 1 2

Cardinality of P(A) 1 2 4

If you can’t quite see the pattern here, try finding the cardinality of P(A) when |A| = 3 or |A| = 4.

The following proposition describes the relationship between |A| and |P(A)| when A is a finite set.

Proposition 2: Let n be a positive integer. If A is a set with |A| = n, then |P(A)| = 2n.

Proof: How many ways are there to construct a subset of A? For each element of A, we have

two choices: we can either include it as an element of the subset or not. Since there are 2 choices

for each element of A and n elements in total, there are 2 · 2 · · · 2 = 2n different ways to form a

subset of A. Thus, |P(A)| = 2n.

For example, Proposition 2 tells us that the power set of A = {0, 1, 2} will have 23 = 8 elements. We

can confirm this by listing the elements as follows:

P(A) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}} .

Remember, P(A) is just another set, so we are able to talk about its power set as well. This new

power set, P(P(A)), consists of all subsets of P(A). Let’s check out some examples.

Example 3:

(a) We saw that the power set of A = {1} is the 2-element set P(A) = {∅, {1}}. Thus, the

power set P(P(A)) will have 22 = 4 elements (by Proposition 2) and is given as follows:

P(P(A)) = {∅, {∅}, {{1}}, {∅, {1}}} .

4



(b) The power set of A = {0, 1} has 22 = 4 elements, and therefore |P(P(A))| = 24 = 16. As

an exercise, try listing the elements of P(P(A))!

(c) The power set of A = {0, 1, 2} has cardinality 23 = 8, and therefore P(P(A)) contains a

whopping 28 = 256 elements!

The above examples show that for finite sets, the cardinality of P(A) is often quite a bit larger than

the cardinality of A itself. It turns out that the same is true for even infinite sets.

To make this idea precise, let A be any set (finite or infinite). The power set of A will be at least as

large as A since it contains all sets of the form {a} where a ∈ A. But can it ever be the case that

|A| = |P(A)|? No – the power set is always bigger! This result, due to Cantor, is presented below.

Its proof is one of my favourites in all of mathematics!

Cantor’s Theorem: For every set A, |A| 6= |P(A)|.

Proof: Consider what it would mean if |A| were, in fact, equal to |P(A)|. In this case, there

would exist a bijection f : A→ P(A) that pairs each element of A with some subset of A, f(A).

To see why the existence of this function f is problematic, consider the set

S = {a ∈ A : a /∈ f(a)} .

This set S is a subset of A – it contains exactly the elements of A that are not in the in the

set they are matched with by f . Since S ∈ P(A) and f : A → P(A) is surjective, there is an

element a ∈ A such that f(a) = S.

We now consider the following question: is a ∈ S? If so, then by the way we defined S, we know

that a /∈ f(a) = S. This is clearly a contradiction. But if instead a /∈ S, then again, by the way

we defined S, we know that a ∈ f(a) = S – another contradiction!

Whether a ∈ S or a /∈ S, we always reach a contradiction. Since our logic at every stage of the

argument was sound, this must mean that our initial assumption—that there exists a bijection

f : A→ P(A)—is incorrect. Since no such bijection exists, we conclude that |A| 6= |P(A)|.
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Cantor’s Theorem tells us that from any given set A, we can obtain a set with greater cardinality by

considering its power set, P(A). When A = N, for example, Cantor’s Theorem says that |N| < |P(N)|.
But why stop there? We could next consider P(P(N)), the set of all subsets of P(N). According to

Cantor, this set has an even larger cardinality than P(N)!

If we continue in this way, we obtain an infinite chain of (infinite) cardinalities!

|N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < · · ·

You may wonder where |R|, our favourite example of an uncountable set, can be found within this

chain. It turns out that

|R| = |P(N)|.

To show that this is the case, we’ll make use of the fact that every real number can be represented

as a decimal in binary using 0’s and 1’s. For instance, in binary, 0.11 represents 2−1 + 2−2 = 3/4,

while 0.101 represents 2−1 + 2−3 = 5/8. Infinite decimals are also possible, such as 0.101010 = 0.10

to represent 2−1 + 2−3 + 2−5 + · · · = 2/3.

Example 4: |R| = |P(N)|.

Proof: Consider the function f that sends each subset S ⊆ N to the binary decimal number

0.a1a2a3a4 . . . where an =

{
1 if n ∈ S,

0 if n /∈ S.

For example,

f({1, 2, 4}) = 0.11010000 . . . = 0.1101,

f({2, 4, 6, 8, . . .}) = 0.010101 . . . = 0.01,

f(∅) = 0.0000 . . . = 0.

Since each binary decimal represents a real number, f produces real numbers in [0, 1] from

elements of P(N). If f : P(N)→ [0, 1] happens to be bijective, then |P(N)| = |[0, 1]|, which we

know from Lesson 1 is the same as |R|.

It turns out that f is surjective: it can produce any real number in [0, 1] as an output. It is

almost injective, but not quite. The issue here is that real numbers can have more than one
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binary expansion. For instance, both 0.1 and 0.011111 . . . = 0.01 represent the number 1/2.

This means that f ({1}) = 1
2

and f ({2, 3, 4, . . .}) = 1
2
, so there are cases where different inputs

can produce the same output. Uh oh...

Rest assured, it’s possible to fix the issue by choosing just one of the binary expansions—either

the terminating decimal or non-terminating decimal—to represent each real number in [0, 1].

We’ll accept this as possible and not dwell on the fine details here. Thus, |P(N)| = |R|.

Cartesian Products

Given sets A and B, we can form a new set consisting of all ordered pairs (a, b), where a ∈ A and

b ∈ B. This set is known as the Cartesian product of A and B and is denoted A×B.

Definition 3: The Cartesian product of sets A and B is the set

A×B = {(a, b) : a ∈ A and b ∈ B} .

The notation A2 is commonly used to denote the Cartesian product A× A.

For instance, if A = {1, 2} and B = {1, 2, 3}, then

A×B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)},

A2 = A× A = {(1, 1), (1, 2), (2, 1), (2, 2)}

Notice that the order of the elements in each pair is important: the pairs (1, 2) and (2, 1), for example,

are considered to be distinct.

Here are some additional examples involving some familiar sets.

Example 5:

(i) The set R2 = R×R consists of all pairs (x, y) where x, y ∈ R. That is, R2 is the set of all

points in the xy-plane.
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(ii) The set [0, 1]2 = [0, 1] × [0, 1] is a

subset of R2. Its elements are the

pairs (x, y) such that 0 ≤ x ≤ 1 and

0 ≤ y ≤ 1.

We can visualize [0, 1]2 as the set of

all points in the unit square shown

on the right.
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(iii) The set Z2 = Z× Z is also a subset

of R2. It consists of all pairs (a, b)

where a, b ∈ Z, such as (1, 0) and

(−2, 1).

These points—known as integer

points or lattice points—are

shown in blue.
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We are interested in understanding the cardinality of a Cartesian product A× B. It’s not too hard

to see that if A and B are finite sets, so too is A×B. Try to figure out what the cardinality of A×B

might be in this case.

Exercise 3: If A and B are finite sets with |A| = m and |B| = n, what is |A×B|?

If instead, A and B are countable sets, what can be said about the cardinality of A×B? The answer

may not be so obvious when at least one of A or B is countably infinite. To get a sense of what’s

going on here, let’s check out an example.

Consider the set Z2 = Z× Z, which is a Cartesian product of countably infinite sets. We saw above

that Z2 can be visualized as the set of all integer points in the xy-plane. As it happens, this set is

countable – the integer points can be listed by following the spiral path from (0, 0) shown below.
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N 1 2 3 4 5 · · ·
↓ ↓ ↓ ↓ ↓ · · ·

Z2 (0, 0) (1, 0) (1, 1) (0, 1) (−1, 1) · · ·

Since any countably infinite set is in one-to-one correspondence with Z, perhaps it seems reasonable

that a Carestian product of two countable sets will be countable, just as Z × Z is countable. Sure

enough, this turns out to be the case.

Proposition 3: If A and B are countable sets, then A×B is also countable.

Proof: Note that if A = ∅ or B = ∅, then A×B = ∅, as there is no way to form any pair (a, b).

Having considered this case, we will assume from here on that A 6= ∅ and B 6= ∅.

Since A and B are countable, their elements can be written as lists:

A : a1, a2, a3, a4, . . .

B : b1, b2, b3, b4, . . .

Note that these lists may be finite or infinite.

The elements of A× B are pairs (a, b) where a ∈ A and b ∈ B. Therefore, we can consider the

pairs whose first entry is a1, the pairs whose first entry is a2, and so on; and arrange these pairs

in a (possibly infinite) table:

First entry a1 (a1, b1) (a1, b2) (a1, b3) · · ·
First entry a2 (a2, b1) (a2, b2) (a2, b3) · · ·
First entry a3 (a3, b1) (a3, b2) (a3, b3) · · ·

...
...

...
...

. . .

From here, how can we show that A×B is countable? That is, how can we express the elements

of A×B in a (possibly infinite) list? Try to wrap up the argument on your own!
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As an application of Proposition 3, all of the following sets are countable:

N2, Z2, Q2, N× Z, N×Q, Z×Q.

The case of a Cartesian product involving uncountable sets is a little more complicated. Such a

product A×B will certainly be uncountable (provided that A and B are non-empty), but establishing

the precise relationship between |A|, |B|, and |A×B| is a bit beyond the scope of this lesson.

Rather than addressing Cartesian products of uncountable sets generally, we will focus on the specific

example of R2. It turns out—perhaps surprisingly—that |R2| = |R|, meaning that there are the same

number of points on the real line as there are in the entire xy-plane!

Example 6: |R× R| = |R|.

Proof: We will begin by showing that |(0, 1) × (0, 1)| = |(0, 1)|. To do this, recall that every

element of (0, 1) can be written as

0. a1a2a3 . . . where an ∈ {0, 1, 2, . . . , 9}.

Thus, consider the function f : (0, 1) × (0, 1) → (0, 1) that interlaces two decimal numbers to

produce a single decimal number:

f(0.a1a2a3 . . . , 0.b1b2b3 . . .) = 0.a1b1a2b2a3b3 . . .

We have to be a little careful when handling numbers with more than one decimal expansion,

just as in Example 4. Once we’ve agreed on which decimal expansion to use, it is possible to

show that our function f is both surjective and injective. Thus, since f is a bijection from

(0, 1)× (0, 1) to (0, 1), these sets have equal cardinality.

To complete the proof that |R × R| = |R|, recall from Lesson 1 that |R| = |(0, 1)|. It should

therefore seem reasonable that |R× R| = |(0, 1)× (0, 1)|. Consequently,

|R× R| = |(0, 1)× (0, 1)| = |(0, 1)| = |R|.
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Cartesian Products of Three or More Sets

We can also consider Cartesian products of three or more sets A1, A2, . . . , An by extending our

definition of A×B in a very natural way.

Definition 4: The Cartesian product of sets A1, A2, . . . , An is the set

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An} .

The notation An is commonly used to denote the set A× A× · · · × A︸ ︷︷ ︸
n times

.

As an example, we can visualize R3 = R × R × R as the set of all points in 3D space. In R3, the

location of a point is described relative to three axes: the x-axis, y-axis, and z-axis.

Within R3, [0, 1]3 = [0, 1] × [0, 1] × [0, 1] is the set of points in the unit cube shown below (left),

while Z3 = Z× Z× Z is the set of all integer points (or lattice points) shown in blue (right).
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In the previous section, we argued that if A and B are countable, then so is A×B. Similar arguments

show that this result extends to Cartesian products of three or more sets. In particular, the set Z3

of all integer points in R3 is countable!
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Proposition 4: If A1, A2, . . . , An is a finite collection of countable sets, then the Cartesian

product

A1 × A2 × · · · × An

is also countable.

Likewise, our proof that |R2| = |R| can also be extended to show that |Rn| = |R| for all positive

integers n. This means that all of the following sets have the same cardinality:

R3 = All of 3D space

R2 = All of 2D space (i.e., all points in the xy-plane)

R = All of 1D space (i.e., all points on the real number line)

[0, 1]3 = All points in the unit cube

[0, 1]2 = All points in the unit square

[0, 1] = All points in a straight line segment of length 1

Take a step back and think about what we’ve just discovered: since |R3| = |[0, 1]|, we’ve shown that

there are the same number of points in all of 3D space as there are in just a single edge of a cube!

Now you have to admit... that’s pretty cool!!
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