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1. Answer the following questions involving the cardinality of power sets.

(a) Let A = {a, b, c, d}. List the elements of P(A).

(b) If |P(A)| = 8192, what is |A|?

(c) Does there exist a set A such that |P(A)| = 100? Explain.

(d) If |P(P(A))| = 2, what can be said about A?

(e) If |P(P(A))| is less than 4 billion, what is the largest possible value of |A|?

Solution:

(a) There are 24 = 16 elements in P(A). They are:

0-element sets ∅
1-element sets {a} {b} {c} {d}
2-element sets {a, b} {a, c} {a, d} {b, c} {b, d} {c, d}
3-element sets {a, b, c} {a, b, d} {a, c, d} {b, c, d}
4-element sets {a, b, c, d}

(b) Since |P(A)| is finite, A must be finite. In particular, if |A| = n, then |P(A)| = 2n.

So we must to determine the value of n such that 2n = 8192. Trial and error

will work, but if you know a bit about logarithms, you can also solve this using a

calculator:

2n = 8192 =⇒ log2(2
n) = log2(8192) =⇒ n = log2(8192) = 13.

Thus, |A| = 13.

(c) If A is a finite set with cardinality n, then the cardinality of |P(A)| is 2n. But since
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100 is not an integer power of 2, it must be the case that there does not exist a finite

set A with |P(A)| = 100.

(d) If |A| = n, then |P(A)| = 2n, and hence |P(P(A))| = 2(2n). Since we know that

|P(P(A))| = 2, it must be the case that

2(2n) = 2 = 21.

By comparing exponents, we see that 2n = 1 and hence n = 0. This means that

|A| = 0, so A = ∅.

Indeed, if A = ∅, then P(A) = {∅} and P(P(A)) = {∅, {∅}}, so |P(P(A))| = 2.

(e) If |A| = n, then |P(A)| = 2n, and hence |P(P(A))| = 2(2n). We must determine the

largest value of n such that 2(2n) < 4 000 000 000. Using a calculator, we compute a

few values of 2(2n) and record the results in the table below:

n 2n 2(2n)

0 1 2

1 2 4

2 4 16

3 8 256

4 16 65 536

5 32 4 294 967 296

Even with just 5 elements in A, the set P(P(A)) has nearly 4.3 billion elements!

Thus, the largest possible value for |A| is |A| = 4.

2. Categorize the following sets based on their cardinality:

Z, P(Z11), R× R× R, Z2 × Z8, N×Q, P(N), P(R), [0, 1], P({0, 1} × {0, 1})
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Solution:

- The set of integers, Z, is countably infinite. We saw this in Lesson 1.

- Since Z11 has n = 11 elements, its power set, P(Z11), will have 2n = 211 = 2048

elements. In particular, this is a finite set.

- The Cartesian product R × R × R (also written as R3) was shown in the notes to

have the same cardinality as R.

- Since |Z2| = 2 and |Z8| = 8, there are 2 · 8 = 16 ways to form a pair (a, b) with

a ∈ Z2 and b ∈ Z8. Thus, |Z2 × Z8| = 16.

- Since N×Q is a Cartesian product of two countable sets, this set is countable. More

specifically, it is countably infinite.

- It was shown in the notes that |P(N)| = |R|.

- By Cantor’s Theorem, |P(R)| is even larger than |R|.

- We saw in Lesson 1 that |[0, 1]| = |R|.

- The set {0, 1} × {0, 1} consists of four pairs: (0, 0), (1, 0), (0, 1), and (1, 1). Thus,

P({0, 1} × {0, 1}) contains 24 = 16 elements.

Having considered the cardinality of each set separately, we are now prepared to sort them

into categories based on their size:

|A| = 16 |A| = 2048 |A| = |N| |A| = |R| |A| > |R|
Z2 × Z8 P(Z11) Z R× R× R P(R)

P({0, 1} × {0, 1}) N×Q P(N)

[0, 1]

3. Let A, B, C, D be sets. Show that if |A| = |C| and |B| = |D|, then |A×B| = |C ×D|.

Solution: Since |A| = |C|, there exists a bijective function f : A → C. Likewise, since

|B| = |D|, there exists a bijective function g : B → D.

To show that |A×B| = |C×D|, we must exhibit a bijective function h : A×B → C×D.
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To this end, consider the function

h : A×B → C ×D, h(a, b) = (f(a), g(b)).

To see that h is surjective, let (c, d) be an element of C×D. Since f : A→ C is surjective,

there exists a ∈ A such that f(a) = c; and likewise, since g : B → D is surjective, there

exists b ∈ B such that g(b) = d. Thus, we have

h(a, b) = (f(a), g(b)) = (c, d),

hence h is surjective.

To see that h is injective, consider two equal outputs h(a1, b1) = h(a2, b2):

h(a1, b1) = h(a2, b2) =⇒ (f(a1), g(b1)) = (f(a2), g(b2)) (by definition of h)

=⇒ f(a1) = f(a2) and g(b1) = g(b2)

=⇒ a1 = a2 and b1 = b2 (since f and g are injective)

=⇒ (a1, b1) = (a2, b2).

Since equal outputs must come from equal inputs, h is injective. Thus, h is bijective.

4. We have seen that a Cartesian products of finitely many countable sets is countable. That is,

if A1, A2, . . . , An are countable, then so is A1 × A2 × · · · × An.

Is the same true for a countably infinite collection of countable sets? That is, if A1, A2, A3, . . .

are countable sets, must A1 × A2 × A3 × · · · be countable as well?

Hint: Let A = {0, 1, 2, . . . , 9}. Is the Cartesian product A × A × A × · · · countable? Think

about decimal expansions.

Solution: As suggested in the hint, we will let A = {0, 1, 2, . . . , 9} and consider the

Cartesian product A× A× A× · · · . This set contains all infinite tuples

(a1, a2, a3, a4, a5, . . .), where ai ∈ {0, 1, 2, . . . , 9}.
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It will be helpful to change our perspective and think of these tuples as decimal numbers:

(a1, a2, a3, a4, a5, . . .) ←→ 0.a1 a2 a3 a4 a5 . . .

Since each ai can be any number from {0, 1, 2, . . . , 9}, the tuples (a1, a2, a3, a4, a5, . . .) can

be used to construct any real number 0.a1 a2 a3 a4 a4 . . . in [0, 1]. Since we know that [0, 1]

is uncountable, the set A× A× A× · · · must be uncountable as well.

The moral here is that while a Cartesian product of finitely many countable sets is count-

able, the Cartesian product of countably many countable sets—even countably many finite

sets—may be uncountable!

5. Prove that at any point (a, b) in the xy-plane, there is a circle centred at (a, b) that does not

pass through any points of the form (p, q) where p and q are rational.

Hint: Compare the number of circles one can draw at an arbitrary point (a, b) with the number

of points (p, q) where p and q are rational.

Solution: At each point (a, b) in the xy-plane, there are uncountably many circles centred

at (a, b). Indeed, the equation of a circle centred at (a, b) is

(x− a)2 + (y − b)2 = r2,

where r ∈ (0,∞) is the radius of the circle. Since (0,∞) is an uncountable set, uncountably

many such circles can be drawn.

Note, however, that there are only countably many points (p, q) where p and q are rational.

Indeed, these points are exactly the elements Q×Q, which we know to be countable, since

Q is countable. Thus, while there are uncountable many circles centred at (a, b), only

countably many of them can pass through points (p, q) where p and q are rational.

Therefore, some (in fact, most) of the circles centred at (a, b) must not pass through any

rational points!
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6. Recall from one of your earlier Math Circles lessons that a real number α is said to be algebraic

if there is a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where a0, a1, . . . , an are rational numbers, such that p(α) = 0. For instance,
√

5 is algebraic,

since p(x) = x2 − 5 is a polynomial with rational coefficients and p(
√

5) = 0. If no such

polynomial exists, α is said to be transcendental.

In this exercise, you will determine the cardinality of the set of algebraic numbers and the set

of transcendental numbers.

(a) Let Pn be the set of all polynomials of degree n with rational coefficients. For instance,

P2 is the set of all polynomials of the form

p(x) = a2x
2 + a1x+ a0, where a0, a1, a2 ∈ Q.

Show that Pn is countable by exhibiting a bijection

f : Qn+1 −→ Pn.

(b) Let P be the set of all polynomials with rational coefficients. Show that P is countable.

Hint: Proposition 1 from the notes.

(c) Let A denote the set of algebraic real numbers. Using part (b), as well as the fact that a

polynomial of degree n has at most n real roots, show that A is countable.

(d) Let T denote the set of all transcendental real numbers. Show that T is uncountable.1

Solution:

(a) To see that Pn is countable, consider the function f : Qn+1 −→ Pn defined by

f(a0, a1, . . . , an) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

1This shows that although it’s tough to write down specific examples of transcendental numbers, most real numbers
are, in fact, transcendental!
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One may verify that f is both surjective and injective, and hence f is a bijection.

Therefore,

|Qn+1| = |Pn|.

As a finite product of countable sets, Qn+1 is countable. Thus, so is Pn.

(b) The set P can be thought of as a union of the sets Pn:

P =
∞⋃
n=1

Pn = P1 ∪ P2 ∪ P3 ∪ · · ·

Note that since each Pn was shown in (a) to be countable, P is a countable union

of countable sets. Since we showed in our first live session that countable unions of

countable sets are themselves countable, we conclude that P is countable, as claimed.

(c) Since P is countable, the polynomials in this set can be written as a list:

P = {p1, p2, p3, p4, . . .}.

For each n, let Rn denote the set of roots of pn. Since the algebraic numbers are

exactly the roots of the polynomials in P, we have

A =
∞⋃
n=1

Rn = R1 ∪R2 ∪R3 ∪ · · ·

Note that since each polynomial has only finitely many roots, each set Rn is finite,

hence countable. Thus, A is a countable union of countable sets. Since we showed in

our first live session that countable unions of countable sets are themselves countable,

we conclude that A is countable, as claimed.

(d) Observe that every real number is either algebraic or transcendental. That is

R = A ∪ T.

It was shown in (c) that A is countable. If T were also countable, then R = A ∪ T
would be a union of two countable sets, hence countable. But since we know that R
is, in fact, uncountable, it must be the case that T is uncountable as well.
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