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Introduction

Last week we looked at graphs and two different search algorithms for graphs. Today, we will look

at a type of graph that’s optimized for searching.

Binary Search Trees

A binary search tree (or BST) is a type of tree graph with specific characteristics. Before we

define the characteristics, we should define more basic things.

These types of graphs are called tree graphs because they have a “root” at the top and “leaves” at

the bottom, with “branches” in between, like an upside down tree! In a tree graph, there are levels

to the graph, where the root is the first level, and each level below is another level to the tree.

The vertices connected below a vertex are called its children and the vertex they’re connected to

would be called their parent. In the specific case for binary trees, a parent can only have 0, 1, or 2

children. Note how the word binary is used here to mean having two (or less) parts. Furthermore,

a vertex can only have one parent. In the binary search tree below, the vertex 5 has two children,

vertex 3 and vertex 8. We would call vertex 5 the parent of vertex 3 and vertex 8.
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Now, we can consider what is special about binary search trees. As you can see in the example above,

binary search trees have number labels for their vertices. The order and placement of the vertices is

what’s really special.

For each parent vertex, the “left” child will have a number that’s less than the parent’s number and

the “right” child with have a number that’s greater than the parent’s number.

Furthermore, when we look at the whole left subtree of a vertex, the numbers will all be less than

the vertex, and the whole right subtree will have numbers that are all greater than the vertex. Note

that when we say subtree, it just means that we are looking at part of the tree instead of the whole

tree. A left subtree would be like looking at the left child of a vertex like it’s a root to the subtree.

Similarly, a right subtree would be like looking at the right child of a vertex like it’s a root to the

subtree. For example, if we look at the right subtree of the vertex numbered 11 in the BST above,

we’d treat vertex 15 like the root of the subtree and our subtree contains the vertices 15, 12, and 17.

Searching a BST

The ordering and placement of the vertices based on their numbers makes it very easy to search for

a vertex with a specific number!

The search algorithm is as follows:

• Start the search by looking at the root.

• Compare the number of the vertex you’re looking at to the number you are searching for.

– If the number of the vertex is what you’re looking for, we are done!

– If the number of the vertex is less than the number you are searching for, look at the

right child of the vertex. If there is no right child, the search is over and the tree does not

contain the number you are looking for.

– If the number of the vertex is greater than the number you are searching for, look at the

left child of the vertex. If there is no left child, the search is over and the tree does not

contain the number you are looking for.

So, when we are searching for a vertex with a specific number, either we will find it easily by using

the “less than” or “greater than” rule, or we will determine that it doesn’t exist in the tree.

Note that we can list the order of the vertices we look at in a similar way to what we did with BFS

and DFS. We can use this to describe what steps we took in our solutions.
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Example

Let’s see how the algorithm works by searching for the following in the BST from earlier. For

each, state the order that the vertices were looked at.

a) A vertex numbered 3.

b) A vertex numbered 12.

c) A vertex numbered 7.
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(a) We start by looking at the root, vertex 9. Since 3 < 9, we look at the left child, which

is vertex 5. Since 3 < 5, we again look at the left child, which is vertex 3 this time. We

were looking for a vertex numbered 3, so we are done! We looked at the vertices in the

order 9, 5, 3.

(b) We start by looking at the root, vertex 9. Since 12 > 9, we look at the right child, which

is vertex 11. Since 12 > 11, we again look at the right child, which is vertex 15. Now,

since 12 < 15, we look at the left child, which is vertex 12. We were looking for a vertex

numbered 12, so we are done! We looked at the vertices in the order 9, 11, 15, 12.

(c) We start by looking at the root, vertex 9. Since 7 < 9, we look at the left child, which

is vertex 5. Since 7 > 5, we look at the right child, which is vertex 8. Since 7 < 8, we

look at the left child, which is vertex 6. Since 7 > 6, we would look at the right child of

vertex 6, but no right child exists. Therefore, there is not a vertex numbered 7 in this

BST. We looked at the vertices in the order 9, 5, 8, 6.
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Exercise 1

Search for the following in the BST below. For each, state the order that the vertices were

looked at.

a) A vertex numbered 11.

b) A vertex numbered 16.

c) A vertex numbered 5.
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Exercise 1 Solution

(a) We start by looking at the root, vertex 15. Since 11 < 15, we look at the left child, which

is vertex 8. Since 11 > 8, we look at the right child, which is vertex 11. We were looking

for a vertex numbered 11, so we are done! We looked at the vertices in the order 15, 8, 11.

(b) We start by looking at the root, vertex 15. Since 16 > 15, we look at the right child, which

is vertex 19. Since 16 < 19, we look at the left child, which is vertex 17. Since 16 < 17,

we would look at the left child of vertex 17, but no left child exists. Therefore, there is no

vertex numbered 16 in this BST. We looked at the vertices in the order 15, 19, 17.

(c) We start by looking at the root, vertex 15. Since 5 < 15, we look at the left child, which is

vertex 8. Since 5 < 8, we look at the left child again, which is vertex 5. We were looking

for a vertex numbered 5, so we are done! We looked at the vertices in the order 15, 8, 5.
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Exercise 2

Instead of searching for a vertex with a specific number, imagine we want to add a vertex with

a number that doesn’t already exist in the tree.

a) What type of algorithm should we use for this? (Hint: Would one similar to the search

algorithm work?)

b) Add a vertex numbered 7 to the following BST from earlier. What order did we look at

the vertices and what does the BST look like afterwards?
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c) Add a vertex numbered 10 to the same BST from earlier. What order did we look at the

vertices and what does the BST look like afterwards?

Exercise 2 Solution

(a) We would follow the same steps as the search algorithm until we get to a non-existent

child. This will always happen because we will never be adding a vertex with a number

that already exists in the tree. Then, we simply add the vertex as the non-existent child,

since that’s where it should be placed according to the algorithm.

(b) We start by searching until we find a non-existent child, looking at the root first, which is

vertex 9. Since 7 < 9, we look at the left child, which is vertex 5. Since 7 > 5, we look at

the right child, which is vertex 8. Since 7 < 8, we look at the left child, which is vertex

6. Since 7 > 6, we would look at the right child of vertex 6, but no right child exists.
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Therefore, now that we have discovered which child the search leads us to, we put the

vertex numbered 7 in this place. So, now vertex 6 has a right child, vertex 7. We looked

at the vertices in the order 9, 5, 8, 6 and the BST will look like the following:
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(c) We start by searching until we find a non-existent child, looking at the root first, which

is vertex 9. Since 10 > 9, we look at the right child, which is vertex 11. Since 10 < 11,

we would look at the left child of vertex 11, but no left child exists. Therefore, we put the

vertex numbered 10 as its left child. We looked at the vertices in the order 9, 11 and the

BST will look like the following:
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